SCATTERING RESULTS FOR DISPERSIVE SYSTEMS

Functional Analysis and Applications Seminar - Universidade de Aveiro

Filipe Oliveira
September 17, 2018
CEMAPRE \& ISEG, Universidade de Lisboa

The Schrödinger-Debye system describes the propagation of an electromagnetic wave through a medium whose response cannot be considered instantaneous:

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

The Schrödinger-Debye system describes the propagation of an electromagnetic wave through a medium whose response cannot be considered instantaneous:

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

Here,

- $u:(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \rightarrow u(x, t) \in \mathbb{C} ;$

The Schrödinger-Debye system describes the propagation of an electromagnetic wave through a medium whose response cannot be considered instantaneous:

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

Here,

- $u:(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \rightarrow u(x, t) \in \mathbb{C}$;
- $v:(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \rightarrow v(x, t) \in \mathbb{R}$;

The Schrödinger-Debye system describes the propagation of an electromagnetic wave through a medium whose response cannot be considered instantaneous:

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

Here,

- $u:(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \rightarrow u(x, t) \in \mathbb{C}$;
- $v:(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \rightarrow v(x, t) \in \mathbb{R}$;
- $\mu>0$;

The Schrödinger-Debye system describes the propagation of an electromagnetic wave through a medium whose response cannot be considered instantaneous:

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

Here,

- $u:(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \rightarrow u(x, t) \in \mathbb{C}$;
- $v:(x, t) \in \mathbb{R}^{d} \times \mathbb{R} \rightarrow v(x, t) \in \mathbb{R}$;
- $\mu>0$;
- $\lambda=1$ (defocusing) or $\lambda=-1$ (focusing).

This last terminology is inherited from the Cubic Schrödinger Equation ($\mu=0$).

LINEAR SOLUTIONS

Consider a general equation

$$
i u_{t}+\Delta u=N(u)
$$

that can be solved globally, where $N(u)$ represent nonlinear terms.

LINEAR SOLUTIONS

Consider a general equation

$$
i u_{t}+\Delta u=N(u)
$$

that can be solved globally, where $N(u)$ represent nonlinear terms. The associated linear equation reads

$$
i u_{t}+\Delta u=0
$$

with solutions, for initial data u_{0}, given by $S(t) u_{0}=e^{i t \Delta} u_{0}$.

Consider a general equation

$$
i u_{t}+\Delta u=N(u)
$$

that can be solved globally, where $N(u)$ represent nonlinear terms. The associated linear equation reads

$$
i u_{t}+\Delta u=0
$$

with solutions, for initial data u_{0}, given by $S(t) u_{0}=e^{i t \Delta} u_{0}$.

Strichartz Estimates

$$
\begin{aligned}
\|S(t) \phi\|_{L_{t}^{p} L_{x}^{q}} \lesssim\|\phi\|_{L^{2}} \\
\left\|\int_{0}^{t} S(t-s) f(x, s) d s\right\|_{L_{t}^{p} L_{x}^{q}} \lesssim\|f\|_{L_{t}^{p^{\prime}} L_{x}^{q^{\prime}}}
\end{aligned}
$$

for (p, q) admissible, that is

$$
\frac{2}{p}=d\left(\frac{1}{2}-\frac{1}{q}\right) \text { and } 2 \leq q \leq \frac{2 d}{d-2}
$$

- The quantity $M(t)=\int|u(t)|^{2}$ is conserved.
- The quantity $M(t)=\int|u(t)|^{2}$ is conserved.
- Furthermore, the Schrödinger-Debye admits the pseudo-energy
- The quantity $M(t)=\int|u(t)|^{2}$ is conserved.
- Furthermore, the Schrödinger-Debye admits the pseudo-energy

$$
\frac{d}{d t} E(t)=2 \lambda \mu \int v_{t}^{2}
$$

where

$$
E(t)=\int|\nabla u|^{2}+2 v|u|^{2}-\lambda v^{2} .
$$

Adán Corcho, Jorge D. Silva \& FO
Proceedings of the AMS, vol. 141, pp 3485-3499, 2013.
Theorem
Let $\left(u_{0}, v_{0}\right) \in H^{1}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right)$ and $\lambda= \pm 1$. Then, for all $T>0$, there exists a unique solution

$$
(u, v) \in C\left([0 ; T], H^{1}\left(\mathbb{R}^{2}\right) \times L^{2}\left(\mathbb{R}^{2}\right)\right)
$$

to the Initial Value Problem associated to the Schrödinger-Debye system.

We say that u scatters to the scattering state u_{+}if

$$
\lim _{t \rightarrow+\infty} S(t) u_{+}-u=0
$$

We say that u scatters to the scattering state u_{+}if

$$
\lim _{t \rightarrow+\infty} S(t) u_{+}-u=0
$$

In other words, the nonlinear solution u behaves as the linear solution $S(t) u_{+}$for large times.
(Simão Correia \& FO, Nonlinearity, Vol 31, 7, 2018)
Scattering of small solutions in dimension $d=4$
Let

$$
(X, Y) \in\left\{\left(L^{2}\left(\mathbb{R}^{4}\right), L^{2}\left(\mathbb{R}^{4}\right)\right),\left(H^{1}\left(\mathbb{R}^{4}\right), H^{1}\left(\mathbb{R}^{4}\right)\right),\left(\Sigma\left(\mathbb{R}^{4}\right), H^{1}\left(\mathbb{R}^{4}\right)\right)\right\}
$$

There exists $\epsilon>0$ such that, if $\left(u_{0}, v_{0}\right) \in X \times Y$ satisfies $\left\|u_{0}\right\|_{X}+\left\|v_{0}\right\|_{Y}<\epsilon$, then the corresponding solution (u, v) of the Schrödinger-Debye system is global and scatters, that is, there exists $u_{+} \in X$ such that

$$
\begin{equation*}
\left\|u(t)-S(t) u_{+}\right\|_{X} \rightarrow 0 \text { and }\|v(t)\|_{Y} \rightarrow 0, \quad t \rightarrow \infty \tag{1}
\end{equation*}
$$

In the particular case $(X, Y)=\left(\Sigma\left(\mathbb{R}^{4}\right), H^{1}\left(\mathbb{R}^{4}\right)\right)$, the following decay estimate holds:

$$
\begin{equation*}
\|u(t)\|_{L^{p}\left(\mathbb{R}^{4}\right)} \lesssim \frac{C\left(\left\|u_{0}\right\|_{\Sigma\left(\mathbb{R}^{4}\right)},\left\|v_{0}\right\|_{H^{1}\left(\mathbb{R}^{4}\right)}\right)}{t^{\left(2-\frac{4}{p}\right)}}, \quad t>0,2<p<4 \tag{2}
\end{equation*}
$$

(Simão Correia \& FO, Nonlinearity, Vol 31, 7, 2018)

Scattering of small solutions in dimensions $d=2,3$

There exists $\delta>0$ such that, if $\left(u_{0}, v_{0}\right) \in \Sigma\left(\mathbb{R}^{d}\right) \times H^{1}\left(\mathbb{R}^{d}\right), d=2,3$, satisfies $\left\|u_{0}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)}+\left\|v_{0}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)}<\delta$, then the corresponding solution (u, v) of the Schrödinger-Debye System scatters, that is, there exists $u_{+} \in \Sigma\left(\mathbb{R}^{d}\right)$ such that

$$
\left\|u(t)-S(t) u_{+}\right\|_{\Sigma\left(\mathbb{R}^{d}\right)} \rightarrow 0,\|v(t)\|_{H^{1}\left(\mathbb{R}^{d}\right)} \rightarrow 0, \quad t \rightarrow \infty
$$

Furthermore,

$$
\begin{equation*}
\|u(t)\|_{L^{p}\left(\mathbb{R}^{d}\right)} \lesssim \frac{C\left(\left\|u_{0}\right\|_{\Sigma\left(\mathbb{R}^{d}\right)},\left\|v_{0}\right\|_{H^{1}\left(\mathbb{R}^{d}\right)}\right)}{t^{d\left(\frac{1}{2}-\frac{1}{p}\right)}}, \quad t>0,2<p<2 d /(d-2)^{+} \tag{3}
\end{equation*}
$$

(Simão Correia \& FO, Nonlinearity, Vol 31, 7, 2018)

Modified Scattering in dimension $d=1$
There exists $\epsilon>0$ such that, if $\left(u_{0}, v_{0}\right) \in \Sigma(\mathbb{R}) \times H^{1}(\mathbb{R})$ satisfies $\left\|u_{0}\right\|_{H^{1}(\mathbb{R})}+\left\|v_{0}\right\|_{H^{1}(\mathbb{R})}<\epsilon$, then the corresponding solution (u, v) of the Schrödinger-Debye system scatters up to a phase correction, that is, there exists (a unique) $u_{+} \in L^{2}(\mathbb{R})$ such that

$$
\left\|e^{i \Psi(t)} S \widehat{(-t) u}(t)-\widehat{u_{+}}\right\|_{L^{2}(\mathbb{R})} \rightarrow 0,\|v(t)\|_{L^{\infty}(\mathbb{R})} \rightarrow 0, \quad t \rightarrow \infty
$$

where $\Psi(\xi, t)=\int_{1}^{t} \int_{1}^{s} \frac{1}{2 s^{\prime}} e^{-\left(s-s^{\prime}\right)}\left|\widehat{f}\left(\frac{s}{s^{\prime}} \xi, s^{\prime}\right)\right|^{2} d s^{\prime} d s$ and $f=S(-t) u$. Also,

$$
\|u(t)\|_{L^{\infty}(\mathbb{R})} \lesssim \frac{1}{t^{\frac{1}{2}}}, \quad t \rightarrow+\infty
$$

We begin by the global well-posedness of solutions for small initial data $\left(u_{0}, v_{0}\right) \in L^{2}\left(\mathbb{R}^{4}\right) \times L^{2}\left(\mathbb{R}^{4}\right)$.

We begin by the global well-posedness of solutions for small initial data $\left(u_{0}, v_{0}\right) \in L^{2}\left(\mathbb{R}^{4}\right) \times L^{2}\left(\mathbb{R}^{4}\right)$.

From the local well-posedness theory, we get the following blow-up alternative:
If $\left[0 ; T^{*}\right.$ [is the maximal time interval of existence, $\lim _{t \rightarrow T^{*}} h(t)=+\infty$, where

$$
h(t)=\|u\|_{L_{T}^{\infty} L_{x}^{2}}+\|u\|_{L_{T}^{2} L_{x}^{4}} .
$$

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

Integral formulation:

$$
v(t)=e^{-t / \mu} v_{0}+\frac{\lambda}{\mu} \int_{0}^{t} e^{-(t-s) / \mu}|u(s)|^{2} d s
$$

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

Integral formulation:

$$
v(t)=e^{-t / \mu} v_{0}+\frac{\lambda}{\mu} \int_{0}^{t} e^{-(t-s) / \mu}|u(s)|^{2} d s
$$

and

$$
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) u(s) v(s) d s
$$

$$
\left\{\begin{array}{l}
i u_{t}+\frac{1}{2} \Delta u=u v \\
\mu v_{t}+v=\lambda|u|^{2}
\end{array}\right.
$$

Integral formulation:

$$
v(t)=e^{-t / \mu} v_{0}+\frac{\lambda}{\mu} \int_{0}^{t} e^{-(t-s) / \mu}|u(s)|^{2} d s
$$

and

$$
u(t)=S(t) u_{0}+\int_{0}^{t} S(t-s) u(s) v(s) d s
$$

that is,

$$
u(t)=S(t) u_{0}+i \int_{0}^{t} S(t-s)\left(e^{-s / \mu} v_{0}+\frac{\lambda}{\mu} \int_{0}^{s} e^{-\left(s-s^{\prime}\right) / \mu}\left|u\left(s^{\prime}\right)\right|^{2} d s^{\prime}\right) u(s) d s
$$

We set $f(t)=S(-t) u(t)$. Since

$$
\|u\|_{L^{2}\left((0, \infty) ; L_{x}^{4}\right)}<\infty
$$

we have

$$
\begin{aligned}
\left\|f(t)-f\left(t^{\prime}\right)\right\|_{L^{2}} & =\left\|S(t)\left(f(t)-f\left(t^{\prime}\right)\right)\right\|_{L^{2}} \\
& \lesssim\|u\|_{L^{2}\left(\left(t^{\prime}, t\right) ; L_{x}^{4}\right)}\left\|v_{0}\right\|_{L^{2}}+\|u\|_{L^{2}\left(\left(t^{\prime}, t\right) ; L_{x}^{4}\right)}^{3} \rightarrow 0, \quad t, t^{\prime} \rightarrow \infty
\end{aligned}
$$

Hence there exists $u_{+}:=\lim _{t \rightarrow \infty} S(-t) u(t) \in L^{2}\left(\mathbb{R}^{4}\right)$.

