Ground states for a Schrödinger System arizing in nonlinear optics

Filipe Oliveira, Universidade de Lisboa

ICIAM 2019 Valencia, 14-19 July

Third harmonic generation

Under certain conditions a monochromatic beam with frequency ω propagating in a dispersive nonlinear medium generates a second beam with frequency $n \omega$ ；

Third harmonic generation

Under certain conditions a monochromatic beam with frequency ω propagating in a dispersive nonlinear medium generates a second beam with frequency $n \omega$;

Third harmonic generation

In a Kerr－type medium，there is generation of a third harmonic generation $(\omega \rightarrow 3 \omega)$ ．We present a model to study the interaction between the two beams（Sammut \＆al，1998）．

Third harmonic generation

In a Kerr-type medium, there is generation of a third harmonic generation $(\omega \rightarrow 3 \omega)$. We present a model to study the interaction between the two beams (Sammut \& al, 1998).
From the Maxwell-Faraday's equation $\frac{\partial \vec{B}}{\partial t}=-\vec{\nabla} \times \vec{E}$
and Ampère's Law $\vec{\nabla} \times \vec{B}=\mu_{0} \frac{\partial \vec{D}}{\partial t}$,

$$
\vec{\nabla} \times \vec{\nabla} \times \vec{E}+\mu_{0} \frac{\partial^{2} \vec{D}}{\partial t^{2}}=0
$$

Third harmonic generation

Using the constitutive law

$$
\vec{D}=\mathrm{n}^{2} \epsilon_{0} \vec{E}+4 \pi \epsilon_{0} \vec{P}_{N L},
$$

where $\vec{P}_{N L}$ is the nonlinear part of the polarization vector and n the linear refractive index, the identity $\mu_{0} \epsilon_{0} c^{2}=1$ and noticing that

$$
\vec{\nabla} \times \vec{\nabla} \times \vec{E}=-\Delta \vec{E}+\vec{\nabla}(\vec{\nabla} \cdot \vec{E})
$$

we get, after neglecting the last term in this identity, the vectorial wave equation

$$
\begin{equation*}
\Delta \vec{E}-\frac{\mathrm{n}^{2}}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\frac{4 \pi}{c^{2}} \frac{\partial^{2} \vec{P}_{N L}}{\partial t^{2}} \tag{1}
\end{equation*}
$$

Third harmonic generation

Assuming that the beams propagate in a slab waveguide, in the direction of the ($\mathrm{Oz} \mathrm{)} \mathrm{axis}$, directions of \vec{E} in two frequency components as

$$
E=\Re e\left(E_{1} e^{i\left(k_{1} z-\omega t\right)}+E_{3} e^{i\left(k_{3} z-3 \omega t\right)}\right)
$$

Third harmonic generation

Assuming that the beams propagate in a slab waveguide, in the direction of the ($\mathrm{Oz} \mathrm{)} \mathrm{axis}$, directions of \vec{E} in two frequency components as

$$
E=\Re e\left(E_{1} e^{i\left(k_{1} z-\omega t\right)}+E_{3} e^{i\left(k_{3} z-3 \omega t\right)}\right)
$$

Inserting in (1), with $P_{N L}=\chi^{(3)} E^{3}$,

$$
\left\{\begin{array}{l}
\Delta_{\perp} E_{1}+2 i k_{1} \frac{\partial E_{1}}{\partial z}+\left(\frac{(\mathrm{n}(\omega))^{2} \omega^{2}}{c^{2}}-k_{1}^{2}\right) E_{1}+\chi\left(\left|E_{1}\right|^{2} E_{1}+2\left|E_{3}\right|^{2} E_{1}+E_{3} \bar{E}_{1}^{2} e^{-i\left(3 k_{1}-k_{3}\right) z}\right)=0 \\
\Delta_{\perp} E_{3}+2 i k_{3} \frac{\partial E_{3}}{\partial z}+\left(\frac{9(\mathrm{n}(3 \omega))^{2} \omega^{2}}{c^{2}}-k_{3}^{2}\right) E_{3}+9 \chi\left(2\left|E_{1}\right|^{2} E_{3}+\left|E_{3}\right|^{2} E_{3}+\frac{1}{3} E_{1}^{3} e^{-i\left(3 k_{1}-k_{3}\right) z}\right)=0,
\end{array}\right.
$$

Third harmonic generation

Rescaling $\left(E_{1}, E_{3}\right) \rightarrow(u, w)$, and for $\sigma=k_{3} / k_{1}$, $\mu=3\left(k_{3}-3 k_{1}+\sigma\right)$,

$$
\left\{\begin{array}{l}
i u_{t}+\Delta u-u+\left(\frac{1}{9}|u|^{2}+2|w|^{2}\right) u+\frac{1}{3} \bar{u}^{2} w=0 \\
i \sigma w_{t}+\Delta w-\mu w+\left(9|w|^{2}+2|u|^{2}\right) w+\frac{1}{9} u^{3}=0
\end{array}\right.
$$

where the z direction is now called t.
Notice that at resonance, $\sigma=3$ and $\mu=9$.

Hamiltonian structure

Nonlinear Schrödinger system with cubic nonlinearity

$$
\left\{\begin{array}{l}
i u_{t}+\Delta u-u+\left(\frac{1}{9}|u|^{2}+2|w|^{2}\right) u+\frac{1}{3} \bar{u}^{2} w=0, \\
i \sigma w_{t}+\Delta w-\mu w+\left(9|w|^{2}+2|u|^{2}\right) w+\frac{1}{9} u^{3}=0 .
\end{array}\right.
$$

Hamiltonian structure

Nonlinear Schrödinger system with cubic nonlinearity

$$
\left\{\begin{array}{l}
i u_{t}+\Delta u-u+\left(\frac{1}{9}|u|^{2}+2|w|^{2}\right) u+\frac{1}{3} \bar{u}^{2} w=0 \\
i \sigma w_{t}+\Delta w-\mu w+\left(9|w|^{2}+2|u|^{2}\right) w+\frac{1}{9} u^{3}=0 .
\end{array}\right.
$$

Defining $U=(u, w), J=\operatorname{diag}\left(\frac{1}{i}, \frac{1}{i \sigma}\right)$ and

$$
\begin{aligned}
H(u, v)= & \frac{1}{2} \int\left(|\nabla u|^{2}+|\nabla v|^{2}+|u|^{2}+\mu|w|^{2}\right) \\
& -\int\left(\frac{1}{36}|u|^{4}+\frac{9}{4}|w|^{4}+|u|^{2}|w|^{2}+\frac{1}{9} \Re e\left(\bar{u}^{3} w\right)\right),
\end{aligned}
$$

Hamiltonian structure

Nonlinear Schrödinger system with cubic nonlinearity

$$
\left\{\begin{array}{l}
i u_{t}+\Delta u-u+\left(\frac{1}{9}|u|^{2}+2|w|^{2}\right) u+\frac{1}{3} \bar{u}^{2} w=0 \\
i \sigma w_{t}+\Delta w-\mu w+\left(9|w|^{2}+2|u|^{2}\right) w+\frac{1}{9} u^{3}=0 .
\end{array}\right.
$$

Defining $U=(u, w), J=\operatorname{diag}\left(\frac{1}{i}, \frac{1}{i \sigma}\right)$ and

$$
\begin{aligned}
H(u, v)= & \frac{1}{2} \int\left(|\nabla u|^{2}+|\nabla v|^{2}+|u|^{2}+\mu|w|^{2}\right) \\
& -\int\left(\frac{1}{36}|u|^{4}+\frac{9}{4}|w|^{4}+|u|^{2}|w|^{2}+\frac{1}{9} \Re e\left(\bar{u}^{3} w\right)\right),
\end{aligned}
$$

Hamiltonian structure and conservation of energy

$$
J U_{t}=H^{\prime}(U)
$$

Conservation of mass and Hamiltonian invariance

Conservation of mass and Hamiltonian invariance

We have for all θ,

$$
H\left(e^{i \theta} u, e^{3 i \theta} w\right)=H(u, w)
$$

Conservation of mass and Hamiltonian invariance

We have for all θ,

$$
H\left(e^{i \theta} u, e^{3 i \theta} w\right)=H(u, w)
$$

From this equality we can obtain

Conservation of mass

$$
\frac{d}{d t} M(u, w)=0
$$

where

$$
M(u, v)=\frac{1}{2} \int|u|^{2}+3 \sigma|w|^{2}
$$

Localized solutions and bound states

We look for solutions of the form

$$
u(x, t)=e^{i \omega t} P(x), \quad w(x, t)=e^{3 i \omega t} Q(x)
$$

where P and Q are real functions with a suitable decay at ∞ ．

Localized solutions and bound states

We look for solutions of the form

$$
u(x, t)=e^{i \omega t} P(x), \quad w(x, t)=e^{3 i \omega t} Q(x)
$$

where P and Q are real functions with a suitable decay at ∞.
These functions (bound states) satisfy

Bound States

$$
\left\{\begin{array}{l}
\Delta P-(\omega+1) P+\left(\frac{1}{9} P^{2}+2 Q^{2}\right) P+\frac{1}{3} P^{2} Q=0 \\
\Delta Q-(\mu+3 \sigma \omega) Q+\left(9 Q^{2}+2 P^{2}\right) Q+\frac{1}{9} P^{3}=0
\end{array}\right.
$$

Action and ground states

We define the action

$$
S(P, Q)=E(P, Q)+\omega M(P, Q)
$$

and single-out the set of ground states, minimizing the action among all bound states (\mathcal{B}) :

$$
\mathcal{G}=\left\{\left(P_{0}, Q_{0}\right) \in \mathcal{B} ; \forall(P, Q) \in \mathcal{B}, S\left(P_{0}, Q_{0}\right) \leq S(P, Q)\right\}
$$

Existence of Ground States

Theorem
Let $1 \leq n \leq 3, \sigma, \mu>0$ and $\omega>\max \{-1,-\mu / 3 \sigma\}$. Then the set of ground states, $\mathcal{G}(\omega, \mu, \sigma)$ is nonempty. In addition, there exists at least one ground state $\left(P_{0}, Q_{0}\right)$ which is radially symmetric, Q_{0} is positive and P_{0} is either positive or identically zero.

Existence of Ground States - Strategy

We consider the set $\mathcal{N}=\left\{(u, v) \neq(0,0): S^{\prime}(u, v) \perp_{L^{2}}(u, v)\right\}$. For $(u, w) \neq(0,0)$ is in \mathcal{N} iff

$$
\begin{aligned}
\tau(u, w):= & \int|\nabla u|^{2}+|\nabla w|^{2}+(1+\omega) u^{2}+(\mu+3 \sigma \omega) w^{2} \\
& -\frac{1}{9} u^{4}-4 u^{2} w^{2}-9 w^{4}-\frac{4}{9} u^{3} w=0 .
\end{aligned}
$$

Existence of Ground States - Strategy

We consider the set $\mathcal{N}=\left\{(u, v) \neq(0,0): S^{\prime}(u, v) \perp_{L^{2}}(u, v)\right\}$. For $(u, w) \neq(0,0)$ is in \mathcal{N} iff

$$
\begin{aligned}
\tau(u, w):= & \int|\nabla u|^{2}+|\nabla w|^{2}+(1+\omega) u^{2}+(\mu+3 \sigma \omega) w^{2} \\
& -\frac{1}{9} u^{4}-4 u^{2} w^{2}-9 w^{4}-\frac{4}{9} u^{3} w=0 .
\end{aligned}
$$

In fact, \mathcal{N} is a complete regular manifold: $(0,0)$ is an isolated point of the set $\{\tau=0\}$ and $\left\langle\tau^{\prime}(u, w),(u, w)\right\rangle \neq 0$ for all $(u, w) \in \mathcal{N}$.

Existence of Ground States - Strategy

We consider the set $\mathcal{N}=\left\{(u, v) \neq(0,0): S^{\prime}(u, v) \perp_{L^{2}}(u, v)\right\}$. For $(u, w) \neq(0,0)$ is in \mathcal{N} iff

$$
\begin{aligned}
\tau(u, w):= & \int|\nabla u|^{2}+|\nabla w|^{2}+(1+\omega) u^{2}+(\mu+3 \sigma \omega) w^{2} \\
& -\frac{1}{9} u^{4}-4 u^{2} w^{2}-9 w^{4}-\frac{4}{9} u^{3} w=0 .
\end{aligned}
$$

In fact, \mathcal{N} is a complete regular manifold: $(0,0)$ is an isolated point of the set $\{\tau=0\}$ and $\left\langle\tau^{\prime}(u, w),(u, w)\right\rangle \neq 0$ for all $(u, w) \in \mathcal{N}$.

Furthermore, the minimizers of $\inf _{\mathcal{N}} S$ are ground states: Indeed, $S^{\prime}\left(u_{0}, w_{0}\right)=\lambda \tau^{\prime}\left(u_{0}, w_{0}\right) \Rightarrow \lambda=0$.

Existence of Ground States - Strategy

The (simplified steps are the following:)

- We consider a minimizing sequence $\left(u_{n}, w_{n}\right) \in \mathcal{N}$;
- We take the Schwarz symmetization $\left(u_{n}^{*}, w_{n}^{*}\right)$ and project it in \mathcal{N} : for some $t,\left(t u_{n}^{*}, t w_{n}^{*}\right) \in \mathcal{N}$;
- We show that it is still a minimizing sequence;
- We use the compact injection

$$
H_{r d}^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right) p>2
$$

to obtain a minimizer.

Semitrivial vs Nontrivial Ground States

Theorem

In addition to the assumptions of the existence Theorem:

- If $\mu=3 \sigma$ and $\mu \geq 9^{\frac{4}{4-n}}$:

All ground states are nontrivial: $P \neq 0$ and $Q \neq 0$.

- if $\omega+1=\mu+3 \sigma \omega$:

All ground states of the form $(0, Q)$ and Q is a ground state of

$$
\Delta Q-(\mu+3 \sigma \omega) Q+9 Q^{3}=0 .
$$

In particular, up to translation, ground states are unique.

Fully non-trivial Ground States

Let

$$
N(u, w):=\int\left(\frac{1}{36} u^{4}+\frac{9}{4} w^{4}+u^{2} w^{2}+\frac{1}{9} u^{3} w\right) .
$$

and

$$
K(u, w)=\|\nabla u\|_{L^{2}}^{2}+\|\nabla w\|_{L^{2}}^{2} .
$$

Fully non-trivial Ground States

Let

$$
N(u, w):=\int\left(\frac{1}{36} u^{4}+\frac{9}{4} w^{4}+u^{2} w^{2}+\frac{1}{9} u^{3} w\right) .
$$

and

$$
K(u, w)=\|\nabla u\|_{L^{2}}^{2}+\|\nabla w\|_{L^{2}}^{2} .
$$

We prove the existence of $\theta, t \in \mathbb{R}$ and $W \in H^{1}$ such that $(t \theta W, t Q) \in \mathcal{N}$ and $S(t \theta W, t Q)<S(0, Q)$.

Fully non-trivial Ground States

- $t^{2}=\frac{K(\theta W, Q)+(1+\omega) M(\theta W, Q)}{4 N(\theta W, Q)}$ assures that $(t \theta W, t Q) \in \mathcal{N} ;$
- $S(t \theta W, t Q)<S(0, Q)$ if and only if

$$
\begin{gathered}
(K(\theta W, Q)+(1+\omega) M(\theta W, Q))^{2} \\
<4 N(\theta W, Q)(K(0, Q)+(\omega+1) M(0, Q))
\end{gathered}
$$

- Coefficients of θ^{4} :

$$
\begin{gathered}
(K(W, 0)+(\omega+1) M(W, 0))^{2} \\
<\frac{1}{9}\left(\int W^{4}\right)(K(0, Q)+(\omega+1) M(0, Q)) .
\end{gathered}
$$

Fully non－trivial Ground States

Setting $W(x)=Q(\lambda x)$ ，and using the homogeneity of the functionals，the condition boils down to

$$
f(\lambda)=\frac{n \mu}{4-n} \lambda^{2}+1-\frac{4 \mu}{9(4-n)} \lambda^{n / 2}<0 .
$$

Fully non－trivial Ground States

Setting $W(x)=Q(\lambda x)$ ，and using the homogeneity of the functionals，the condition boils down to

$$
f(\lambda)=\frac{n \mu}{4-n} \lambda^{2}+1-\frac{4 \mu}{9(4-n)} \lambda^{n / 2}<0 .
$$

f has a global minimum at $\lambda_{0}=9^{-2 /(4-n)}$ and $f\left(\lambda_{0}\right)=1-\mu \lambda_{0}^{2}$ ．

Local Well-Posedness

Theorem

Let $1 \leq n \leq 3$ and $u_{0}, w_{0} \in H^{1}\left(\mathbb{R}^{n}\right)$. Then, the Cauchy problem admits a unique solution,

$$
U=(u, w) \in C\left(\left(-T_{*}, T^{*}\right) ; H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right)\right)
$$

defined in the maximal interval of existence $\left(-T_{*}, T^{*}\right)$, where $T_{*}, T^{*}>0$.

In addition, the following blow-up alternative holds: if $T^{*}<\infty$ then

$$
\lim _{t \rightarrow T^{*}}(K(u, w))=+\infty
$$

where

$$
K(u, w)=\|\nabla u\|_{L^{2}}^{2}+\|\nabla w\|_{L^{2}}^{2} .
$$

Global Well-posedness

$$
\begin{aligned}
2 K(u, w)= & 2 H_{0}-\int\left(|u|^{2}+\mu|w|^{2}\right) \\
& -\int\left(\frac{1}{18}|u|^{4}+\frac{9}{2}|w|^{4}+|u|^{2}|w|^{2}+\frac{2}{9} \Re e\left(\bar{u}^{3} w\right)\right),
\end{aligned}
$$

Global Well-posedness

$$
\begin{aligned}
2 K(u, w)= & 2 H_{0}-\int\left(|u|^{2}+\mu|w|^{2}\right) \\
- & \int\left(\frac{1}{18}|u|^{4}+\frac{9}{2}|w|^{4}+|u|^{2}|w|^{2}+\frac{2}{9} \Re e\left(\bar{u}^{3} w\right)\right), \\
& K(U) \leq H_{0}+C\left(\|u\|_{4}^{4}+\|w\|_{4}^{4}\right)
\end{aligned}
$$

Global Well-posedness

$$
\begin{aligned}
2 K(u, w)= & 2 H_{0}-\int\left(|u|^{2}+\mu|w|^{2}\right) \\
- & \int\left(\frac{1}{18}|u|^{4}+\frac{9}{2}|w|^{4}+|u|^{2}|w|^{2}+\frac{2}{9} \Re e\left(\bar{u}^{3} w\right)\right) \\
& K(U) \leq H_{0}+C\left(\|u\|_{4}^{4}+\|w\|_{4}^{4}\right)
\end{aligned}
$$

By the Gagliardo-Nirenberg inequality: $\|f\|_{4}^{4} \leq C\|\nabla f\|_{2}^{n}\|f\|_{2}^{4-n}$,

Global Well-posedness

$$
\begin{aligned}
2 K(u, w)= & 2 H_{0}-\int\left(|u|^{2}+\mu|w|^{2}\right) \\
- & \int\left(\frac{1}{18}|u|^{4}+\frac{9}{2}|w|^{4}+|u|^{2}|w|^{2}+\frac{2}{9} \Re e\left(\bar{u}^{3} w\right)\right), \\
& K(U) \leq H_{0}+C\left(\|u\|_{4}^{4}+\|w\|_{4}^{4}\right)
\end{aligned}
$$

By the Gagliardo-Nirenberg inequality: $\|f\|_{4}^{4} \leq C\|\nabla f\|_{2}^{n}\|f\|_{2}^{4-n}$,

$$
K(U) \leq H_{0}+C M_{0}^{2-\frac{n}{2}} K(U)^{\frac{n}{2}}
$$

Global Well-Posedness - subcritical case $n=1$

$$
\begin{gathered}
K(U) \leq H_{0}+C M_{0}^{\frac{3}{2}} K(U)^{\frac{1}{2}} \leq H_{0}+C\left(\frac{1}{\epsilon} M_{0}^{3}+\epsilon K(U)\right): \\
(1-C \epsilon) K(U) \leq H_{0}+\frac{C}{\epsilon} M_{0}^{3} .
\end{gathered}
$$

Global Well－Posedness－subcritical case $n=1$

$$
\begin{gathered}
K(U) \leq H_{0}+C M_{0}^{\frac{3}{2}} K(U)^{\frac{1}{2}} \leq H_{0}+C\left(\frac{1}{\epsilon} M_{0}^{3}+\epsilon K(U)\right): \\
(1-C \epsilon) K(U) \leq H_{0}+\frac{C}{\epsilon} M_{0}^{3} .
\end{gathered}
$$

Theorem

For $n=1$ and $\left(u_{0}, w_{0}\right) \in H^{1}(\mathbb{R}) \times H^{1}(\mathbb{R})$ the Cauchy problem is globally well－posed．

Global Well-Posedness - critical case $n=2$

$$
K(U) \leq H_{0}+C M_{0} K(U) \Leftrightarrow\left(1-C M_{0}\right) K(U) \leq H_{0} .
$$

Global Well－Posedness－critical case $n=2$

$$
K(U) \leq H_{0}+C M_{0} K(U) \Leftrightarrow\left(1-C M_{0}\right) K(U) \leq H_{0}
$$

The problem is related to the best constant C one can place in the inequality
$\int\left(\frac{1}{36}|u|^{4}+\frac{9}{4}|w|^{4}+|u|^{2}|w|^{2}+\frac{1}{9}|u|^{3}|w|\right) \leq C K(u, w) M(u, w):$

Global Well-Posedness - critical case $n=2$

$$
K(U) \leq H_{0}+C M_{0} K(U) \Leftrightarrow\left(1-C M_{0}\right) K(U) \leq H_{0}
$$

The problem is related to the best constant C one can place in the inequality

$$
\begin{gathered}
\int\left(\frac{1}{36}|u|^{4}+\frac{9}{4}|w|^{4}+|u|^{2}|w|^{2}+\frac{1}{9}|u|^{3}|w|\right) \leq C K(u, w) M(u, w): \\
\frac{1}{C}=\inf \left\{J(u, w):=\frac{K(u, w) M(u, w)}{N(u, w)}: N(u, w)>0\right\} .
\end{gathered}
$$

Global Well-Posedness - critical case $n=2$

$$
K(U) \leq H_{0}+C M_{0} K(U) \Leftrightarrow\left(1-C M_{0}\right) K(U) \leq H_{0}
$$

The problem is related to the best constant C one can place in the inequality

$$
\begin{gathered}
\int\left(\frac{1}{36}|u|^{4}+\frac{9}{4}|w|^{4}+|u|^{2}|w|^{2}+\frac{1}{9}|u|^{3}|w|\right) \leq C K(u, w) M(u, w): \\
\frac{1}{C}=\inf \left\{J(u, w):=\frac{K(u, w) M(u, w)}{N(u, w)}: N(u, w)>0\right\} .
\end{gathered}
$$

In fact, this infimum is achieved at (any) ground state (P, Q) with $\mu=3 \sigma$ and $\omega=0$.

Global Well-Posedness - critical case $n=2$

$$
K(U) \leq H_{0}+C M_{0} K(U) \Leftrightarrow\left(1-C M_{0}\right) K(U) \leq H_{0}
$$

The problem is related to the best constant C one can place in the inequality

$$
\begin{gathered}
\int\left(\frac{1}{36}|u|^{4}+\frac{9}{4}|w|^{4}+|u|^{2}|w|^{2}+\frac{1}{9}|u|^{3}|w|\right) \leq C K(u, w) M(u, w): \\
\frac{1}{C}=\inf \left\{J(u, w):=\frac{K(u, w) M(u, w)}{N(u, w)}: N(u, w)>0\right\} .
\end{gathered}
$$

In fact, this infimum is achieved at (any) ground state (P, Q) with $\mu=3 \sigma$ and $\omega=0$. Furthermore,

$$
\frac{1}{C}=M(P, Q)
$$

Global Well－Posedness－critical case $n=2$

Theorem

Assume $M\left(u_{0}, w_{0}\right)<M(P, Q)$ ．Then the Cauchy problem is globally well－posed．

Global Well-Posedness - critical case $n=2$

Theorem
Assume $M\left(u_{0}, w_{0}\right)<M(P, Q)$. Then the Cauchy problem is globally well-posed.

This condition is sharp, at least at resonance.

Global Well-Posedness - supercritical case $n=3$

We have

$$
\begin{gathered}
K(U(t)) \leq H_{0}+C M_{0}^{\frac{1}{2}} K(U(t))^{\frac{3}{2}} \\
f(K(U)) \geq 0 \text { where } f(r)=H_{0}-r+C M_{0}^{\frac{1}{2}} r^{\frac{3}{2}} .
\end{gathered}
$$

Global Well-Posedness - supercritical case $n=3$

We can prove:

Theorem

Assume $n=3$ and $u_{0}, w_{0} \in H^{1}\left(\mathbb{R}^{3}\right)$. Suppose that

$$
H\left(u_{0}, w_{0}\right) M\left(u_{0}, w_{0}\right)<\frac{1}{2} H(P, Q) M(P, Q)
$$

and

$$
K\left(u_{0}, w_{0}\right) M\left(u_{0}, w_{0}\right)<K(P, Q) M(P, Q)
$$

where (P, Q) is any ground state with $\omega=0$ and $\mu=3 \sigma$. Then, as long as the local solution given in exists, there holds

$$
K(u(t), w(t)) M(u(t), w(t))<K(P, Q) M(P, Q)
$$

In particular, this implies that the Cauchy problem is globally well-posed under these conditions.

Blow-up

Assume

$$
u_{0}, w_{0} \in \Sigma=H^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n},|x|^{2} d x\right)
$$

and define

$$
V(t)=\int|x|^{2}\left(|u(t)|^{2}+3 \sigma|w(t)|^{2}\right)
$$

where $(u(t), w(t))$ is the maximal solution with initial data $\left(u_{0}, w_{0}\right)$, and defined in the maximal time interval $\left[0, T^{*}\right)$.

Then $V \in C^{2}\left(\left[0, T^{*}\right)\right)$.

Blow-up

Assume

$$
u_{0}, w_{0} \in \Sigma=H^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n},|x|^{2} d x\right)
$$

and define

$$
V(t)=\int|x|^{2}\left(|u(t)|^{2}+3 \sigma|w(t)|^{2}\right)
$$

where $(u(t), w(t))$ is the maximal solution with initial data $\left(u_{0}, w_{0}\right)$, and defined in the maximal time interval $\left[0, T^{*}\right)$.

Then $V \in C^{2}\left(\left[0, T^{*}\right)\right)$.
If $V^{\prime \prime}(t)<0$ for all t, the solution cannot exist globally in time.

Blow-up

Theorem

Assume

$$
u_{0}, w_{0} \in \Sigma=H^{1}\left(\mathbb{R}^{n}\right) \cap L^{2}\left(\mathbb{R}^{n},|x|^{2} d x\right)
$$

and define

$$
V(t)=\int|x|^{2}\left(|u(t)|^{2}+3 \sigma|w(t)|^{2}\right)
$$

where $(u(t), w(t))$ is the maximal solution with initial data $\left(u_{0}, w_{0}\right)$, defined in the maximal time interval $\left[0, T^{*}\right)$. Then $V \in C^{2}\left(\left[0, T^{*}\right)\right)$. In addition,

$$
V^{\prime}(t)=4 \operatorname{Im} \int(\bar{u}(t) x \cdot \nabla u(t)+3 \bar{w}(t) x \cdot \nabla w(t))
$$

Blow up

Theorem

Furthermore,

$$
\begin{gathered}
V^{\prime \prime}(t)=\int\left(8|\nabla u|^{2}+8|\nabla w|^{2}-\frac{2 n}{9}|u|^{4}-\frac{54 n}{\sigma}|w|^{4}-8 n|u|^{2}|w|^{2}\right) \\
+2\left(\frac{24}{\sigma}-8\right) \Re e \int \bar{u}|w|^{2} x \cdot \nabla u+\frac{1}{9}\left(\frac{12}{\sigma}-12\right) n \Re e \int \bar{u}^{3} w \\
+\frac{1}{9}\left(\frac{24}{\sigma}-8\right) \Re e \int 3 \bar{u}^{2} w x \cdot \nabla u .
\end{gathered}
$$

For $\sigma=3$ (at resonance), $V^{\prime \prime}(t)=8 n H\left(u_{0}, w_{0}\right)+4(2-n) \int|\nabla u|^{2}+|\nabla w|^{2}-4 n \int|u|^{2}+\mu|w|^{2}$.

Blow-up

Theorem

Let $u_{0}, v_{0} \in \Sigma:=H^{1} \cap L^{2}\left(|x|^{2} d x\right)$ and $]-T_{*}, T^{*}[$ the maximal time interval of existence of the solution given by the local-wellposedness result.
For $n=2,3, \sigma=3$ and $\mu=9$, if

$$
2 H\left(u_{0}, w_{0}\right)<M\left(u_{0}, w_{0}\right)
$$

then $T_{*}<+\infty$ and $T^{*}<+\infty$.

Blow-up

Theorem
Also,
(i) If $2 E\left(u_{0}, w_{0}\right)=M\left(u_{0}, w_{0}\right)$ and

$$
\operatorname{Im} \int\left(\bar{u}_{0} x \cdot \nabla u_{0}+3 \bar{w}_{0} x \cdot \nabla w_{0}\right)<0
$$

then $T^{*}<\infty$.
(ii) If $2 E\left(u_{0}, w_{0}\right)=M\left(u_{0}, w_{0}\right)$ and

$$
\operatorname{Im} \int\left(\bar{u}_{0} x \cdot \nabla u_{0}+3 \bar{w}_{0} x \cdot \nabla w_{0}\right)>0
$$

then $T_{*}<\infty$.

Blow-up
Theorem
(iii) If $2 H\left(u_{0}, w_{0}\right)>M\left(u_{0}, w_{0}\right)$ and

$$
\begin{gathered}
\sqrt{2} / m \int\left(\bar{u}_{0} x \cdot \nabla u_{0}+3 \bar{w}_{0} x \cdot \nabla w_{0}\right) \\
<-\sqrt{n\left(2 E\left(u_{0}, w_{0}\right)-M\left(u_{0}, w_{0}\right)\right) M\left(x u_{0}, x w_{0}\right)}
\end{gathered}
$$

then $T^{*}<\infty$.
(iv) If $2 H\left(u_{0}, w_{0}\right)>M\left(u_{0}, w_{0}\right)$ and

$$
\begin{gathered}
\sqrt{2} / m \int\left(\bar{u}_{0} x \cdot \nabla u_{0}+3 \bar{w}_{0} x \cdot \nabla w_{0}\right) \\
>\sqrt{n\left(2 E\left(u_{0}, w_{0}\right)-M\left(u_{0}, w_{0}\right)\right) M\left(x u_{0}, x w_{0}\right)}
\end{gathered}
$$

then $T_{*}<\infty$.

Blow-up

Theorem

Assume $n=3, \sigma=3, \mu=9$. Suppose that $u_{0}, w_{0} \in \Sigma$ and

$$
\begin{equation*}
H\left(u_{0}, w_{0}\right) M\left(u_{0}, w_{0}\right)<\frac{1}{2} H(P, Q) M(P, Q) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
K\left(u_{0}, w_{0}\right) M\left(u_{0}, w_{0}\right)>K(P, Q) M(P, Q) \tag{3}
\end{equation*}
$$

where (P, Q) is any ground state with $\omega=0$ (and $\mu=3 \sigma$). Then the solution blows up in finite time.

（In）stability of Ground States $\left(e^{i \omega t} P(x), e^{3 i \omega t} Q(x)\right)$

Recall that the system is invariant by translations and rotations：
If (u, w) is a solution so are

$$
(u(\cdot+y) w(\cdot+y)) \text { and }\left(e^{i \theta} u, e^{3 i \theta} w\right)
$$

We introduce the orbit generated by (P, Q) is defined by

$$
\mathcal{O}_{P, Q}=\left\{\left(e^{i \theta} P(\cdot+y), e^{3 i \theta} Q(\cdot+y)\right): \quad \theta \in \mathbb{R}, y \in \mathbb{R}^{n}\right\}
$$

(In)stability of Ground States ($\left.e^{i \omega t} P(x), e^{3 i \omega t} Q(x)\right)$

Definition (Orbital stability)

We say that a standing wave ($e^{i \omega t} P, e^{3 i \omega t} Q$) is orbitally stable if for any $\epsilon>0$ there exists a $\delta>0$ with the following property: if $\left(u_{0}, w_{0}\right) \in H^{1} \times H^{1}$ satisfies $\left\|\left(u_{0}, w_{0}\right)-(P, Q)\right\|_{H^{1} \times H^{1}}<\delta$ then the solution with initial data $\left(u_{0}, w_{0}\right)$ is global and satisfies

$$
\sup _{t \in \mathbb{R}} \inf _{(\theta, y) \in \mathbb{R} \times \mathbb{R}^{n}}\left\|(u(t), w(t))-\left(e^{i \theta} u(\cdot+y), e^{3 i \theta} u(\cdot+y)\right)\right\|_{H^{1} \times H^{1}}<\epsilon .
$$

(In)stability of Ground States $\left(e^{i \omega t} P(x), e^{3 i \omega t} Q(x)\right)$

Definition (Orbital stability)

We say that a standing wave ($e^{i \omega t} P, e^{3 i \omega t} Q$) is orbitally stable if for any $\epsilon>0$ there exists a $\delta>0$ with the following property: if $\left(u_{0}, w_{0}\right) \in H^{1} \times H^{1}$ satisfies $\left\|\left(u_{0}, w_{0}\right)-(P, Q)\right\|_{H^{1} \times H^{1}}<\delta$ then the solution with initial data $\left(u_{0}, w_{0}\right)$ is global and satisfies

$$
\sup _{t \in \mathbb{R}} \inf _{(\theta, y) \in \mathbb{R} \times \mathbb{R}^{n}}\left\|(u(t), w(t))-\left(e^{i \theta} u(\cdot+y), e^{3 i \theta} u(\cdot+y)\right)\right\|_{H^{1} \times H^{1}}<\epsilon .
$$

- Strong instability: There exists initial data arbitrary close to (P, Q) such that the corresponding solution blows-up in finite time.
- Weak instability: Given any neighbourhood $\mathcal{O}_{(P, Q)}^{(\epsilon)}$ of $\mathcal{O}_{(P, Q)}$ there exists initial data arbitrary close to (P, Q) such that the corresponding solution leaves $\mathcal{O}_{(P, Q)}^{(\epsilon)}$ in finite time.

Instability of Ground States $\left(e^{i \omega t} P(x), e^{3 i \omega t} Q(x)\right)$

Theorem
Assume either $n=3$ and $\mu>0$ or $n=2$ and $\mu \neq 3 \sigma$ ．Then all real ground states (P, Q) are weakly orbitally unstable．

Instability of Ground States $\left(e^{i \omega t} P(x), e^{3 i \omega t} Q(x)\right)$

Theorem

Assume either $n=3$ and $\mu>0$ or $n=2$ and $\mu \neq 3 \sigma$ ．Then all real ground states (P, Q) are weakly orbitally unstable．

Let

$$
\Sigma:=\left\{(u, w) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right): M(u, w)=M(P, Q)\right\} .
$$

Instability of Ground States $\left(e^{i \omega t} P(x), e^{3 i \omega t} Q(x)\right)$

Theorem

Assume either $n=3$ and $\mu>0$ or $n=2$ and $\mu \neq 3 \sigma$. Then all real ground states (P, Q) are weakly orbitally unstable.

Let

$$
\Sigma:=\left\{(u, w) \in H^{1}\left(\mathbb{R}^{n}\right) \times H^{1}\left(\mathbb{R}^{n}\right): M(u, w)=M(P, Q)\right\} .
$$

General criterium: The existence of Ψ such that
(i) Ψ belongs to the tangent space $T_{(P, Q)} \Sigma$;
(ii) $\left\langle S^{\prime \prime}(P, Q) \Psi, \Psi\right\rangle<0$;
(iii) + some geometric (straightforward) conditions.

(In)stability of Ground States $\left(e^{i \omega t} P(x), e^{3 i \omega t} Q(x)\right)$

We will take $\Psi=\Gamma^{\prime}(0)$ with

$$
\Gamma(t)=\left(\gamma(t) \lambda^{\frac{n}{2}}(t) P(\lambda(t) \cdot), \alpha(t) \lambda^{\frac{n}{2}}(t) Q(\lambda(t) \cdot)\right)
$$

where α, γ, and λ are smooth functions to be chosen later satisfying,

$$
\alpha(0)=\gamma(0)=\lambda(0)=1
$$

and, setting $k=\frac{\int P^{2}}{3 \sigma \int Q^{2}}$,

$$
\gamma^{2} k+\alpha^{2}=k+1
$$

(In)stability of Ground States $\left(e^{i \omega t} P(x), e^{3 i \omega t} Q(x)\right)$

$S(\Gamma(t))=E(\Gamma(t))+\frac{\omega}{2} M(P, Q)$, because $\Gamma(t) \subset \Sigma$. Thus,
$\frac{d^{2}}{d t^{2}} E(\Gamma(t))=\frac{d^{2}}{d t^{2}} S(\Gamma(t))=\left\langle S^{\prime \prime}(\Gamma(t)) \Gamma^{\prime}(t), \Gamma^{\prime}(t)\right\rangle+\left\langle S^{\prime}(\Gamma(t)), \Gamma^{\prime \prime}(t)\right\rangle$.
Evaluating at $t=0$ and using that $S^{\prime}(P, Q)=0$, we see that

$$
\left\langle S^{\prime \prime}(P, Q) \Psi, \Psi\right\rangle<0
$$

is equivalent to

$$
\left.\frac{d^{2}}{d t^{2}} E(\Gamma(t))\right|_{t=0}<0
$$

We get

$$
\begin{aligned}
& \left.\frac{d^{2}}{d t^{2}} E(\Gamma(t))\right|_{t=0}= \\
& =\alpha_{0}^{2}\left[\int\left(-\frac{2}{k^{2}} P^{4}+\frac{8}{k} P^{2} Q^{2}-18 Q^{4}+\left(\frac{2}{3 k}+\frac{1}{9}-\frac{1}{3 k^{2}}\right) P^{3} Q\right)\right] \\
& \quad+2 \alpha_{0} \lambda_{0}\left[2(3 \sigma-\mu) \int Q^{2}\right. \\
& \left.+(n-2) \int\left(\frac{1}{9 k} P^{4}-9 Q^{4}+\left(\frac{2}{k}-2\right) P^{2} Q^{2}+\left(\frac{1}{3 k}-\frac{1}{9}\right) P^{3} Q\right)\right] \\
& \quad+\lambda_{0}^{2} \frac{n(2-n)}{4} \int\left(\frac{1}{9} P^{4}+9 Q^{4}+4 P^{2} Q^{2}+\frac{4}{9} P^{3} Q\right) \\
& \equiv A_{0} \alpha_{0}^{2}+2 B_{0} \alpha_{0} \lambda_{0}+C_{0} \lambda_{0}^{2} .
\end{aligned}
$$

