Exercises

1. Plot the density function of the Gamma r.v. with parameters
a. $\alpha=1, \theta=1$
b. $\alpha=2, \theta=1$
c. $\alpha=3, \theta=1$
2. Plot the density function of the Lognormal r.v. with parameters
a. $\mu=0, \sigma=1$
b. $\mu=0, \sigma=5$
c. $\mu=0, \sigma=3 / 2$
d. $\mu=0, \sigma=1$
e. $\mu=0, \sigma=1 / 2$
f. $\mu=0, \sigma=1 / 4$
3. Plot the density function of the Pareto r.v. with parameters
a. $\alpha=1, \theta=1$
b. $\alpha=2, \theta=1$
c. $\alpha=3, \theta=1$

Exercises

4. Is the function

$$
F_{X}(x)=\left\{\begin{array}{llc}
0 & \text { for } & x<0 \\
0.01 x & \text { for } & 0 \leq x<50 \\
0.02 x-0.5 & \text { for } & 50 \leq x<75 \\
1 & & x \geq 75
\end{array}\right.
$$

a distribution function? Justify.
5. Find the constant K so that

$$
f_{X}(x)=K x^{2}, \quad-K<x<K
$$

is a probability density function.
6. If $X \sim N(2,1)$ find $\operatorname{Pr}\{|X-2|<1\}$

Exercises

7. Given the c.d.f.

$$
F_{X}(x)=\left\{\begin{array}{llc}
0 & \text { for } & x<0 \\
x^{2}+0.2 & \text { for } & 0 \leq x<0.5 \\
x & \text { for } & 0.5 \leq x<1 \\
1 & & x \geq 1
\end{array}\right.
$$

express it as a mixture of the distribution functions of a continuous and a discrete r.v.'s.
8. If X is an exponential distribution with mean 2 , find $\operatorname{Pr}\{X<1 \mid X<2\}$
9. A die is cast until a 6 appears. What is the probability that it must be cast more than 5 times?

Exercises

10. Determine the distribution, density and hazard rate function for a survival function of the age at death so that

$$
\operatorname{Pr}(X>x)=\left\{\begin{array}{clr}
1-0.01 x & \text { for } & 0 \leq x<50 \\
1.5-0.02 x & \text { for } & 50 \leq x<75
\end{array}\right.
$$

Do you think that this model is reasonable described?
11. A random variable X has density function $f_{X}(x)=4 x\left(1+x^{2}\right)^{-3}$, $x>0$. Determine the mode of X.
12. A nonnegative random variable has hazard rate function $h(x)=A+e^{2 x}, x \geq 0$. Assuming known that $S(0.4)=0.5$, determine A.
13. Consider a r.v. with distribution function $F_{X}(x)=1-x^{-2}, x \geq 1$. Determine the mean, median, mode and hazard rate. Determine the probability that X is greater than 20. Comment.

Exercises

14. Let (x) denote a life aged x, where $x \geq 0$. Let T_{x} denote the future lifetime of (x), and is supposed to be a continuous random variable This means that $x+T_{x}$ is the age-at-death for (x). Let F_{x} denote the distribution function of T_{x}, so that

$$
F_{x}(t)=\operatorname{Pr}\left\{T_{x} \leq t\right\}
$$

and let S_{x} be the survival function of T_{x}, so that

$$
S_{x}(t)=\operatorname{Pr}\left\{T_{x}>t\right\}
$$

i.e. $S_{x}(t)$ represents the probability that (x) survives at least t years. Let T_{0} be the future lifetime at birth of the same individual. Show that

Exercises

a.

$$
S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}
$$

(or $S_{0}(x+t)=S_{0}(x) S_{x}(t)$, i.e. the probability of survival from birth to age $x+t$ is the product of surviving from birth to age x, and the probability that having survived to age x, of further surviving to age $x+t$).
b. Denote the force of mortality (hazard rate) at age x, by μ_{x}. In the class μ_{x} was defined as the ratio $\frac{f_{0}(x)}{S_{0}(x)}$, where f_{0} is the density function of T_{0}.
i. Show that μ_{x} can be defined as

$$
\mu_{x}=\lim _{d x \rightarrow 0^{+}} \frac{\operatorname{Pr}\left\{T_{0} \leq x+d x \mid T_{0}>x\right\}}{d x} .
$$

ii. Show that μ_{x} can be defined as

$$
\mu_{x}=\lim _{d x \rightarrow 0^{+}} \frac{\operatorname{Pr}\left\{T_{x} \leq d x\right\}}{d x}
$$

c. Let

$$
F_{0}(t)=1-(1-t / 120)^{1 / 6} \text { for } 0 \leq t \leq 120
$$

Calculate the probability that
i. a newborn life survives beyhond age 40,
ii. a life aged 40 dies before age 50,
iii. a life aged 50 survives beyhond age 65,
iv. calculate μ_{x}.

