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Abstract

We explore the implications of a common market and academic practice which is known
as “freezing the drift” when dealing with swap interest rate dynamics.

In mathematical terms this can be better understood as imposing a low variance mar-
tingale (LVM) assumption. We look into the LVM Assumption implications, both on the
shape and dynamics for default-free yield curves. We show that the LVM Assumption is
equivalent to consider future yield curves are nothing but deterministic translations of the
initial curve. For the particular case of the Nelson Siegel yield curve calibration, we show
the LVM Assumption requires a deterministic parameter’s evolution and, thus, imposes the
need to constantly recalibrate the model.

Finally, based upon ECB historical data on evolution of the default-free Euro area yield
curve, we illustrate periods in which the LVM may be applicable and others in which is not.

Keywords: drift freeze; low variance martingale; instantaneous forward rate; yield curve;
Nelson Siegel model.

1 Introduction

It is hard to deal with the dynamics of swap interest rates, regardless of the chosen interest rate
model. The difficulty arises because swap rate dynamics have an elaborate drift expression, under
the martingale measures needed to compute prices or hedge most interest rate derivatives.
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The standard practice is, thus, “to freeze the drift” , i.e., to assume that some processes can be
approximated by their initial values. Freezing the drift was first proposed by Brace et al. [6] for
the pricing of swaptions under the context of the lognormal forward–Libor model or Libor market
model (LMM) and has been used by several authors ever since. For some recent papers that use
this assumption in various contexts, we refer to Beveridge and Joshi [1], Chen and Sandman [10],
Gerzelak and Oosterlee [15] or Mahfoudhi [17].

Freezing the drift allows for great computational ease and to handle various fixed income
products in a consistent way. Concretely, under this assumption, it is possible:

• to show that, for LMM, the swap interest rates are approximately lognormal, which result
in the fusion of all interest rate market models (see Brace et al. [5] and d’Aspremont [11]);

• to extend the LMM to include more realistic forward volatilities (see Brace and Womersley
[7]);

• to compute, for affine term structure models, closed-form swaption prices (see Schrager and
Pelsser [22]) and convexity adjustments (see Gaspar and Murgoci [14]).

Despite the industry popularity and the growing literature which simply “freezes the drift”,
there are only few studies focusing on its financial implications, either from a theoretical point of
view or from an empirical perspective.

The studies that do exist tend to look at the accuracy of the approximation that results from
freezing the drift, for the pricing of a particular product, given the choice of a particular interest
rate model. In the context of the LMM, some authors – see Rebonato [20], Brace et al. [4], Dun
et al. [12], Schlögl [21] or Brigo and Liinev [8] – argue that freezing the drift can be justified. On
the other hand, Kurbanmruradov et al. [16] shown that it does not yield acceptable results for
exotic derivatives and long time horizons.

The existing results are limited because they focus on particular products and/or models.
Although, “freezing the drift” may provide accurate price approximations for some products, it
will not for others, such as exotics. Also, if we take a model – say the LMM as given – we are
already assuming forward rates are lognormal and it could be that under that particular context,
“freezing the drift” is not that bad. But what about in general? Or in real life? Is “freezing the
drift” of swap rates a realistic assumption?

This paper contributes to the literature by answering the above questions and by taking a
different perspective. We do not take into to account any particular interest rate product and/or
model, instead we look into the assumption per se. We formally state it and analyse its implications
in terms of the shape and dynamics of the default-free yield curve.

The remain of this paper is organised as follows. Section 2 briefly introduces the notation
and our setup. It starts by reviewing some basic concepts on swap interest rates and the swap
martingale measure. It then shows “freezing the drift” is equivalent to assuming some processes
are low variance martingales (LVM) under the swap martingale measure and formally states the
LVM Assumption. Section 3 presents the key theoretical results on the implications of the LVM
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to the shape and dynamics of default-free yield curves. In Section 4 we focus on the Nelson
Siegel parameterization for calibrating yield curves and prove that the LVM implies constant (but
deterministic) recalibration of the model. In Section 5 we take an empirical perspective. Based
upon historical calibrations of the Euro zone default-free yield curve, preformed by the European
Central Bank (ECB) we illustrate the (un)realism of having a LVM Assumption. We show that if
it is true that for some particular instants the true yield curve and the yield curve implied by the
LVM are relatively close to one another, most of the times they are not. Section 6 concludes the
paper summarising the results and discussing their implications both for academic research and
industry.

Let us consider a fixed-for-floating forward-start interest rate swap (IRS) with contract date
t0. The starting date of the first effective period of the swap is T0 and the payment dates are T1,
T2,..., TN , with t0 < T0 < T1 < ... < TN . We define the tenor structure as T = {T0, T1, ...., TN}
and the year’s fractions between the tenor’s dates as αi = Ti − Ti−1, for i = 1, 2, ..., N (see Figure
1). Without loss of generality, we consider the nominal value equal to 1. For i = 1, 2, ..., N ,
the floating leg pays at each time Ti the amount αiL(Ti−1, Ti), where the LIBOR rate L(Ti−1, Ti)
is observed at time Ti−1 for the maturity Ti. The fixed leg pays the amount αiS(t0, T ), where
S(t0, T ) is a fixed interest rate contracted at time t0 for the tenor structure T .

timet0 T0 T1 T2 ... TN−1 TN

α1 α2 αN

Figure 1: Forward-start interest rate swap’s timeline.

Given a tenor T and for any date t before the first effective period T0, i.e. t0 < t < T0 and
Ti ∈ T , the forward swap rate S (t, T ) is the fixed rate that makes the IRS a fair contract at that
time t. We, thus, obtain

S (t, T ) =
p(t, T0)− p(t, TN)

P (t, T )
, (1)

where p(t, T ) is the price at time t, of a zero coupon bond that pays 1 at time Ti for Ti ∈ T , and
P (t, T ) represents the price process of a portfolio of zero coupon bonds,

P (t, T ) =
N∑
i=1

αip(t, Ti). (2)

The portfolio price process, P (T ) = {P (t, T ) : t0 ≤ t < T0}, is known as the swap level.
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Let us now consider the martingale measure where the numeraire is the swap level. This
measure is usually called swap measure and we will represent it by QS(T ), to reinforce the fact
that it depends on the chosen tenor T .

It becomes clear that the process of the swap rates S(T ) = {S(t, T ) : t0 ≤ t < T0} is a mar-
tingale under the swap measure, i.e., for t0 ≤ s < t < T0,

EQS(T )

[S(t, T )|Fs] = EQS(T )

[
p(t, T0)− p(t, TN)

P (t, T )

∣∣∣∣Fs] =
p(s, T0)− p(s, TN)

P (s, T )
= S(s, T ).

For further details on swap martingale measures we refer to Björk [2] or Brigo and Mercurio [9].

Let us now consider the ratio between each zero coupon bond price and the swap level, that
is, for i = 1, 2, ..., N and t0 ≤ t < T0,

Xi(t, T ) =
p(t, Ti)

P (t, T )
. (3)

We can then conclude that, the processes Xi(T ) = {Xi(t, T ) : t0 ≤ t < T0} are also QS(T ) - mar-

tingales. That is, EQS(T )
[Xi(t, T )|Fs] = Xi(s, T ), for each i = 1, 2, ..., N and t0 ≤ s < t < T0.

Furthermore, for αi = α, for i = 1, ..., N – which is common in financial markets where 6
month or 1 year is the standard – and for t0 ≤ t < T0 , Xi can be further simplified to

Xi(t, T ) =
1

α


p(t, Ti)
N∑
j=1

p(t, Tj)

 .

The ratio in brackets represents the proportion of the price of a zero coupon bond maturing at the
payment date Ti, p(t, Ti) over the sum of prices of all zero coupon bonds maturing at all payment
dates T1, ...., TN of the swap under consideration.

For the purpose understanding why it is so important to freeze the drift when dealing with
swap rates and its connection to the processes Xi(T ) = {Xi(t, T ) : t0 ≤ t < T0}, we have a quick
look at the dynamics of the swap rates. We follow the approach in Gaspar and Murgoci [14] and
take as given the risk-neutral dynamics of zero-coupon bond prices

dp(t, T ) = rtp(t, T )dt+ v(t, T )p(t, T )dWQ
t (4)

where r is the short interest rate, v is any adapted process and W is a Wiener process under the
risk-neutral martingale measure denoted by Q.

The dynamics in (4) is not restrictive as any stochastic interest rate model – no matter if it
is a market model, a short rate model or and HJM-type model – imply some dynamics for zero
coupon bonds and the key part of that dynamics is the volatility process v.
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Given the dynamics in (4) and a concrete IRS with tenor T , it is straightforward to derive the
Q-dynamics for the portfolio of bond prices that is swap level. Indeed, the dynamics of P (t, T )
for t0 ≤ t < T0 is given by,

dP (t, T ) = rtP (t, T ) dt+ V (t, T )P (t, T ) dWQ
t ,

where we have the notation

V (t, T ) =
N∑
i=1

αip(t, Ti)v(t, Ti)

P (t, T )
=

N∑
i=1

αiXi(t, T )v(t, Ti) ,

and the dependence on Xi(t, T ), defined in (3), becomes clear.

Using the above dynamics for zero coupon bond price and for swap level it is possible to derive,
the swap rate S(t, T ). Under the swap measure, QS(T ), the swap rate dynamics is given by

dS(t, T ) = {v(t, T0)X0(t, T )− v(t, TN)XN(t, T )− [X0(t, T )−XN(t, T )]V (t, T )}dW S
t .

Notice the diffusion term above is quite complex as X0(t, T ) and XN(t, T ) are given by (3).

Moreover, under any martingale measure, other than the swap measure, the drift of the swap
rate dynamics also depends on the processes Xi(T ) = {Xi(t, T ) : t0 ≤ t < T0}, making simulations
and pricing of interest rate products intractable.

This is the reason many practitioners and researchers opt for “freezing the drift”, which relies
on considering

Xi(t, T ) ≈ Xi(t0, T ).

We start Section 2 by stating formally the assumption on the processes Xi(T ) for i = 1, 2, ..., N .

2 Low Variance Martingale Assumption

Formally by “freezing the drift” one assumes the ratio between the price of a zero coupon bond
and a portfolio of discount bonds is a low variance martingale (LVM) under the swap measure.
Therefore, the ratio’s value at each time may be approximated by its conditional expected value,
particularly by its time zero value. The LVM Assumption can be enunciated as follows.

Assumption 2.1. (LVM) Let T = {T0, T1, ...., TN} be a tenor associated to a forward-start IRS
with contractual date t0, and let Xi(T ) = {Xi(t, T ) : t0 ≤ t < T0}, for i = 1, 2, ..., N , be the
processes, where Xi(t, T ) is defined in (3).

The processes Xi(T ), for i = 1, 2, ..., N , are low variance QS(T ) - martingales, i.e., for i =
1, 2, ..., N and t0 ≤ t < T0,

Xi(t, T ) ≈ EQS(T )

(Xi(t, T )|Ft0) = Xi(t0, T ).
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Aiming at an interpretation of the LVM Assumption, we consider the case where αi = α, i =
1, ..., N . The assumption states that Xi(t, T ) ≈ Xi(t0, T ), i = 1, ..., N , which means that for
each time t, such that, t0 ≤ t < T0, the proportion that the zero coupon bond with maturity Ti
represents on the portfolio at time t is equal to the proportion at time t0. In other words, we freeze
the proportion at time t0. To freeze is equivalent to consider that at each time t the zero coupon
bond is obtained by multiplying the portfolio at this time by the initial proportion. That is, the
zero coupon bond with maturity Ti for any time t corresponds always to the same proportion of
the portfolio at this time.

In the rest of this section we study the implications of the LVM Assumption.

Let us introduce new simplifying notations,

D(t0, t, T ) =
p(t, T )

p(t0, T )
and K(t0, t, T ) =

P (t, T )

P (t0, T )
, (5)

with t0 ≤ t < T0 and T ∈ T , where D(t0, t, T ) (respectively, K(t0, t, T )) is the zero coupon bond
price (respectively, portfolio price) at time t relative to its initial value.

Proposition 2.1 states our first LVM Assumption implication.

Proposition 2.1. Let T = {T0, T1, ...., TN} be a tenor associated to a forward-start IRS with
contract date t0. The LVM Assumption is equivalent to

D(t0, t, Ti) ≈ K(t0, t, T ), i = 1, 2, ..., N

for t0 ≤ t < T0, where D(t0, t, Ti) and K(t0, t, T ) are defined in (5).

Proof. Suppose that the LVM Assumption holds, this means that for t0 ≤ t < T0,

Xi(t, T ) ≈ Xi(t0, T ), i = 1, ..., N.

Recalling the Xi(t, T ) definition in (3), we can rewrite the LVM Assumption as

p(t, Ti)

P (t, T )
≈ p(t0, Ti)

P (t0, T )
, i = 1, 2, ..., N,

which is equivalent to
p(t, Ti)

p(t0, Ti)
≈ P (t, T )

P (t0, T )
, i = 1, 2, ..., N.

Finally, taking into account (5) we conclude the proof.

Note that since K(t0, t, T ) does not depend on Ti, then the Proposition 2.1 also means that
D(t0, t, T1) ≈ D(t0, t, T2) ≈ ... ≈ D(t0, t, TN). In other words, the Proposition 2.1 shows that, for
each tenor T and contract date t0, the LVM Assumption is equivalent to assuming that D(t0, t, Ti)
does not depend on Ti, for i = 1, 2, ..., N . That is, it implicitly states that all zero coupon bonds
included in the portfolio have the same price at time t relative to its initial value, no matter their
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maturity. Furthermore, this value is equal to the portfolio price at time t relative to its initial
value.

At this point we want to explore the influence of the LVM Assumption on instantaneous forward
interest rates. Let us remember the relation between zero coupon bonds and the instantaneous
forward interest rate

p(t, T ) = exp

(
−
∫ T

t

f(t, u) du

)
, (6)

where f(t, u) represents the instantaneous forward interest rate at time t with maturity u, with
t ≤ u ≤ T . Using the previous relation, we can rewrite D(t0, t, T ), for t0 ≤ t < T0 and i =
1, 2, ..., N , as

D(t0, t, Ti) = exp

(∫ t

t0

f(t0, u) du

)
exp

(∫ Ti

t

[f(t0, u)− f(t, u)] du

)
. (7)

Corollary 2.1. Let T = {T0, T1, ...., TN} be a tenor associated to a forward-start IRS with contract
date t0. If the LVM Assumption holds, instantaneous forward interest rate with different contract
dates but with the same maturity have approximately the same value. Namely,

f(t, T ) ≈ f(t0, T ), t0 ≤ t < T0, T ∈ [T1, TN ].

Proof. Considering t ∈ [t0, T0[ and i, j ∈ {1, 2, ..., N} with i < j, if the LVM Assumption holds,
by the Proposition 2.1, D(t0, t, Ti) ≈ D(t0, t, Tj). Taking into account (7), this is equivalent to∫ Ti

t

[f(t0, u)− f(t, u)] du ≈
∫ Tj

t

[f(t0, u)− f(t, u)] du,

which implies that∫ Tj

Ti

[f(t0, u)− f(t, u)] du ≈ 0, ∀i, j ∈ {1, 2, ..., N}, i < j, t0 ≤ t < T0. (8)

Considering g(u) = f(t0, u) − f(t, u), for u ∈ [T1, TN ], and omitting the dependence on t0 and t,
Equation (8) is equivalent to∫ Tj

Ti

g(u) du ≈ 0, ∀i, j ∈ {1, 2, ..., N}, i < j.

The function g is the difference of two continuous functions, then g is still continuous.

• If g(u) ≥ 0 or g(u) ≤ 0 for u ∈ [Ti, Tj], given that
∫ Tj
Ti
g(u) du ≈ 0, then g(u) ≈ 0, for

u ∈ [Ti, Tj].
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• If g does not have the same signal in the interval [Ti, Tj], there are intervals where g is
positive, negative or null.

Without loss of generality, let us suppose that there is S ∈ [Ti, Tj], such that g(S) = 0, with
g(u) ≥ 0, u ∈ [Ti, S] and g(u) ≤ 0, u ∈ [S, Tj]. We assume that there is a IRS, contracted at
time t0, with a tenor which only differ from the original IRS on one date. That is, the new
IRS has one more payment date at time S. Then, using the same reasoning,∫ S

Ti

g(u) du ≈ 0 and

∫ Tj

S

g(u) du ≈ 0,

which, along with g(u) ≥ 0, u ∈ [Ti, S] and g(u) ≤ 0, u ∈ [S, Tj], results in g(u) ≈ 0 for
u ∈ [Ti, Tj].

We conclude that g(u) ≈ 0, for u ∈ [Ti, Tj], ∀i, j ∈ {1, 2, ..., N}, i < j, which implies that
g(u) ≈ 0, u ∈ [T1, TN ]. Remembering the definition of g function, we obtain f(t0, T )− f(t, T ) ≈ 0,
for T ∈ [T1, TN ], which completes the proof.

The previous corollary says that, under the LVM Assumption, the instantaneous forward rate
depends only on the maturity and not on the date where it is evaluated. This implies that
we obtain equal instantaneous forward rates for very different lengths of time to maturity. For
instance, let us consider a 5 years annual forward-start IRS contract today that start in 1 year.
The LVM Assumption implies that the instantaneous forward interest rate today for 2 years is the
same in 3 months for 1 year and 9 months and the same in 6 months for 1 year and half, and so
on. In general, it is not expected to observe this type of restrictive relations in the real market.

Using the definition of the forward swap rate and the relation between the zero coupon bond,
the spot interest rate and the instantaneous forward interest rate, we can obtain the following
result.

Corollary 2.2. Let T = {T0, T1, ...., TN} be a tenor associated to a forward-start IRS with con-
tractual date t0. If the LVM Assumption holds, the forward swap rate at time t is approximately
equal to the forward spot rate at time t0, i.e. for t0 ≤ t < T0

S(t, T ) ≈ S(t0, T ).

Proof. Given Equation (6) and Corollary 2.1, we obtain for t0 ≤ t ≤ T and T ∈ T , p(t0, T ) ≈
p(t0, t)× p(t, T ). Using this equality and Equations (1) and (2) we conclude the proof.

Based on this corollary we concluded that the forward swap rate at time t is determined by the
forward swap rate at time t0. Once again, this is not an expected behaviour on real life markets.

Now, we move into the implications of the LVM Assumption for the shape and dynamics of the
term structure of instantaneous forward rates. For this, we need to compare several instantaneous
forward rates, with different contract dates, but with the same time to maturity. In order to
do that, it is convenient to use the Musiela [18] parameterization, in which ft(τ) represents the
instantaneous forward rate with time to maturity τ and contract date t.
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Corollary 2.3. Let T = {T0, T1, ...., TN} be a tenor associated to a forward-start IRS with con-
tractual date t0. If the LVM Assumption holds,

ft(τ) ≈ ft0(τ + (t− t0)), t0 ≤ t < T0, T1 − t < τ < TN − t.

In other words, the graphic of ft is approximately obtained from the graphic of ft0 by a horizontal
translation associated to the vector ~v = (−(t− t0), 0).

Proof. Using the Musiela’s notation, we notice that the Corollary 2.1 can be written as ft(T −t) ≈
ft0(T − t0), for t0 ≤ t < T0 and T1 ≤ T ≤ TN . Applying the change of variable τ = T − t, we
obtain ft(τ) ≈ ft0(τ + (t− t0)), with τ ∈]T1 − t, TN − t[.

Figure 2: Yield curves at times t0, t1 and t2, assuming that the LVM assumption holds for a
forward-start IRS with contractual date t0 and initial date T0, with t0 < t1 < t2 < T0.

With this graphical approach it is clear that the LVM Assumption freezes the instantaneous
interest rate curve at time t0. The following curves, until the swap starts, are part of the first
curve. In an informal way, we can look at it as the vertical axis moving to the right while the
curve stays “frozen”, as it is illustrated in Figure 2. Clearly, this is not an acceptable supposition
because it means that at time t0 we know a portion of the curve in future times.
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3 Nelson Siegel Model

Nelson and Siegel [19] (NS) suggested a well known parameterization for the calibration of the
instantaneous forward rates curve. Their parameterization takes instantaneous forward rates at
any time t as linear combinations of three components.

Concretely, the NS parameterization is given by

ft(τ, bt) = β0,t + β1,t exp

(
− τ
λt

)
+ β2,t

(
τ

λt

)
exp

(
− τ
λt

)
, τ > 0,

which can be rewritten as follows

ft(τ, bt) = β0,t +

[
β1,t +

τ

λt
β2,t

]
exp

(
− τ
λt

)
, τ > 0.

At any moment t calibration of this parameterization to market data requires optimising the
vector of parameters bt = (β0,t, β1,t, β2,t, λt), with λt > 0. Therefore, we opt for notation ft(., bt)
instead of ft(.).

When the time to maturity approaches zero, the forward rate approaches the constant β0,t+β1,t,

lim
τ→0+

ft(τ, bt) = β0,t + β1,t

and when the time to maturity approaches infinity, the forward rate approaches the constant β0,t,

lim
τ→+∞

ft(τ, bt) = β0,t,

which means that the line y = β0,t is a horizontal asymptote of the graph of ft, for large values of
τ .

We determine the first and the second derivatives with respect to τ , respectively,

f ′t(τ, bt) = − 1

λt

[
β1,t + β2,t

(
τ

λt
− 1

)]
exp

(
− τ
λt

)
and

f ′′t (τ, bt) =
1

λt
2

[
β1,t + β2,t

(
τ

λt
− 2

)]
exp

(
− τ
λt

)
.

If β2,t = 0, once λt > 0, the shape of ft’s graph only depends on β1,t. In particular,

• if β1,t = 0, then ft is a constant function equal to β0,t, i.e, the term structure is flat;

• if β1,t > 0, then ft is a decreasing function with concave upwards;

• if β1,t < 0, then ft is an increasing function with concave downwards.
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If β2,t 6= 0, the monotony of ft depends on the signal of −β2,t
λt
τ + (β2,t − β1,t) and whenever

β1,t
β2,t

< 1 the extreme is attained at τ ∗ = λt

(
1− β1,t

β2,t

)
. Furthermore, the ft’s concavity depends

on the signal of β2,t
λt
τ + (β1,t − 2β2,t) and whenever β1,t

β2,t
< 2 the inflection point is attained at

τ ∗∗ = λt

(
2− β1,t

β2,t

)
.

We analyze the different graphs of ft, depending on the relation between β1,t and β2,t. For
instance, for β2,t > 0 or β2,t < 0, respectively,

• if β1,t
β2,t

< 1, the ft’s graph has a hump shape or a U shape;

• if 1 ≤ β1,t
β2,t

< 2, the ft is a decreasing or an increasing function;

• if β1,t
β2,t
≥ 2, the ft is a decreasing function with concave upwards or an increasing function

with concave downwards.

The previous analysis highlights the different shapes the term structure can exhibit, depending
on the chosen parameters. Each parameter can be associated with an economic interpretation:
β0,t is a level parameter - the long term rate; β1,t is a slope parameter - the spread short/long
term; β2,t is a curvature parameter; λt is a scale parameter.

Until now we have been studying the specificities of the NS model. At this moment we will
investigate the LVM consequences in this model.

Proposition 3.1. Let T = {T0, T1, ...., TN} be a tenor associated to a forward-start IRS with
contract date t0. If the LVM Assumption holds, the relation between the vectors of parameters in
NS model at times t0 and t, bt0 = (β0,t0 , β1,t0 , β2,t0 , λt0) and bt = (β0,t, β1,t, β2,t, λt), with t0 < t < T0,
is given by 

λt = λt0
β0,t = β0,t0

β1,t =
(
β1,t0 + β2,t0

t−t0
λt0

)
e
− t−t0
λt0

β2,t = β2,t0e
− t−t0
λt0

Proof. Considering t0 and t, such that, t0 < t < T0, and bt0 = (β0,t0 , β1,t0 , β2,t0 , λt0), from the NS
model we have

ft0(τ, bt0) = β0,t0 +

[
β1,t0 + β2,t0

τ

λt0

]
exp

(
− τ

λt0

)
, τ > 0. (9)

On the one hand, due to the Corollary 2.3 we know that

ft(τ) = ft0(τ + (t− t0)),∀τ ∈]T1 − t, TN − t[,
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which implies that, for τ ∈]T1 − t, TN − t[,

ft(τ, bt) = β0,t0 + (10)[(
β1,t0 + β2,t0

t− t0
λt0

)
e
− t−t0
λt0 +

(
β2,t0e

− t−t0
λt0

)
τ

λt0

]
exp

(
− τ

λt0

)
.

On the other hand, considering bt = (β0,t, β1,t, β2,t, λt) and calibrating the model at time t, we
obtain

ft(τ, bt) = β0,t +

[
β1,t + β2,t

τ

λt

]
exp

(
− τ
λt

)
, τ > 0. (11)

Note that the expressions referred on (10) and (11) have the same functional form, but with
different parameters. Moreover, they coincide in the open set ]T1− t, TN − t[. This means that the
two functions overlap in a open set. Using the result proven in the Appendix, we conclude that
they must overlap in all domain and we obtain the system in (9).

Proposition 3.1 states a very strong result. It shows that for all times t, with t0 < t < T0, the
parameters of the NS model are nothing but deterministic functions of its parameters at time t0.
Moreover, these deterministic functions are non linear functionals of the original NS components.
We get:

• the scale parameter is equal at t0 and at t, λt = λt0 ;

• the level parameter is equal at t0 and at t, β0,t = β0,t0 ;

• the slope parameter at t, β1,t, has the same signal of β1,t0 + β2,t0
t−t0
λt0

;

• the curvature parameter at t, β2,t, has the same signal of the curvature parameter at t0, β2,t0 .

Taking into account the previous analysis about the shape of the curve ft depending on the

ratio β1,t
β2,t

and noting that β1,t
β2,t

=
β1,t0
β2,t0

+ t−t0
λt0

, we conclude that ft and ft0 graphs can exhibit different

shapes, depending on the value of t−t0
λt0

. For larger values of t and lower values of λt0 , we perchance

can observe different shapes.

The results in this section imply that “freezing the drift” requires constant recalibration of the
yield curves, to keep having default-free yield curves within the NS family. Alternatively, using
the consistency concept of Björk and Gaspar [3], we show the NS parameterization is inconsistent
with the LVM Assumption.

4 Market Data

In this section, we empirically explore the LVM Assumption using real market data on the Euro
zone default-free yield curve. The data is provided by the European Central Bank (ECB) on a
daily basis, since mid 2004.

12



Our main goal is to identify some dates where the LVM Assumption may be reasonable and
others in which the LVM Assumption is not acceptable.

We consider forward-start IRS with initial date, T0, 1 year after the contract date t0. We
present yield curves on four different dates: 3 months, 6 months, 9 months and 1 year after the
contract date. Whenever applied, we consider the first business day after the day we were looking
for. We represent the yield curve until 15 years, to include swaps with possible long final dates.
We use the same rate scale (form 0% to 6%) in all figures, for comparison purposes.

The following graphs compare for the dates referred in the graph title, the ECB constructed
yield curve (full line) and the yield curve estimated by us using the LVM Assumption (dashed
line).

We show the yield curves based on the annual forward-start IRS with initial dates at 01-Oct-
2004, 02-May-2008 and 02-Jan-2013.

Figure 3: Yield curves at 03-Jan-2005, 01-Apr-2005, 01-Jul-2005 and 03-Oct-2005 based on the an-
nual forward-start IRS with contract date at 01-Oct-2004. Full line: ECB yield curve at each date
in the title; Dashed line: Yield curve at each date in the title, considering the LVM Assumption
holds at 01-Oct-2004.

For the IRS with initial date at 01-Oct-2004 (see Figure 3), we observe that for the first dates
the yield curves are closer than for the latest dates.

For the IRS with initial date at 02-May-2008 (see Figure 4), it seems that the LVM Assumption
is not applicable. Although at 01-Aug-2008 the yield curves are not so different, all the remaining
dates have very large differences. Actually, the shape of the yield curve from 2008 to 2009 changed
substantially.

For the IRS with initial date at 02-Jan-2013 (see Figure 5), the LVM Assumption seems to be
applied for all dates. Probably because the shape of the yield curve during 2013 has not changed

13



Figure 4: Yield curves at 01-Aug-2008, 03-Nov-2008, 02-Feb-2009 and 04-May-2009 based on
the annual forward-start IRS with contract date at 02-May-2008. Full line: ECB yield curve at
each date in the title; Dashed line: Yield curve at each date in the title, considering the LVM
Assumption holds at 02-May-2008.

much.

At this point, we need a way to calculate the distance between the two term structures in each
date, in order to compare extensively the differences along the time. Since we are comparing series
of the same length, we decided to use the L1 Minkowski distance.

Recall (for instance, consult Dunford and Schwartz [13]) that the Lp Minkowski distance be-
tween two time series Xt = (x1, x2, ..., xm) and Yt = (y1, y2, ..., ym) is given by

dMIK (Xt, Yt) =

(
m∑
i=1

|xi − yi|p
) 1

p

.

When p = 1 it is the Manhattan distance and when p = 2 it is the Euclidean distance.

For each contract date represented with four graphs, we only consider the two first graphs,
respectively 3 and 6 months after the contractual date. Further, do to the calculations we only
consider a 5 years semiannual forward-start IRS. This means that αi = T0−t0 = 0.5, for i = 1, ..., N
and TN − T0 = 5.
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Figure 5: Yield curves at 02-Apr-2013, 01-Jul-2013, 01-Oct-2013 and 02-Jan-2013 based on the an-
nual forward-start IRS with contract date at 02-Jan-2013. Full line: ECB yield curve at each date
in the title; Dashed line: Yield curve at each date in the title, considering the LVM Assumption
holds at 02-Jan-2013.

For each contract date we calculated the distance between the two time series:

• LVM series - the expected yield curve if the LVM Assumption holds for a 5 years semiannual
forward-start IRS;

• ECB series - the yield curve obtained from the ECB for 3 (and 6) months after the contractual
date.

Table 1 summarises the values obtained.

Contractual Date 3 months 6 months

01-Oct-2004 5.191 6.056
02-May-2008 5.167 12.834
02-Jan-2013 1.146 5.278

Table 1: L1 Minkowski distance between the LVM serie and the ECB serie (for 3 and 6 months).
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We also calculate the refereed distances for each contract date from 06 September 2004 until
15 October 2013. We obtained two graphs plotted in Figure 6, one for 3 months (full line) and
other for 6 months (dashed line). Obviously, the values in each column of Table 1 are points in
each graph.

The obtained graphs are represented in the Figure 6. The two graphs show that the distances
are greater in times in which the yield curve have changed much. This is intrinsically related with
the fact that the LVM Assumption freezes the yield curve.
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Figure 6: L1 Minkowski distances between the two time series (LVM and ECB), for contractual
dates from 06 September 2004 until 15 October 2013. Full line: 3 months; Dashed line: 6 months.
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5 Conclusion

In this paper, we explore the common practice of “freezing the drift” when dealing with the
dynamics of swap interest rates, for the purpose of simulations and pricing or hedging of interest
rate derivatives that have swap rates as underlying.

We show that “freezing the drift” is equivalent to assuming that ratio between of zero coupon
bond prices (of all maturities) and the swap level is a low variance martingale (LVM), under the
swap martingale measure.

Contrary to the existing literature, we do not assume any particular stochastic interest rate
model or financial product. We focus, instead, on the general implications of the LVM Assumption
on the shape and dynamics of the default-free yield curve.

We have shown that the LVM Assumption means that the yield curve is frozen from the
contract date of an IRS to the beginning of its first effective period. Consequently, we show
the LVM Assumption imposes a deterministic but non linear evolution on the parameters of the
popular NS parameterization, which implies inconsistency between the LMV assumption and this
parameterization.

Finally, our empirical analysis of the LVM Assumption based upon historical Euro area default-
free yield curves allowed us to identify since 2004, periods where LVM Assumption could be
applicable and others in which this was definitely not the case.
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Appendix A.

Theorem. Functions f and g have domain R and functional forms

f(x) = a+ (b+ cx) exp (dx) , x ∈ R (12)

and
g(x) = a1 + (b1 + c1x) exp (d1x) , x ∈ R. (13)

If they overlap in an open set I ⊆ R, then they overlap in R, that is,

f(x) = g(x), x ∈ I =⇒ f(x) = g(x), x ∈ R.

Proof. Let us consider functions f and g, with functional forms (12) and (13), and an open set
I ⊆ R. Let us suppose that f(x) = g(x), x ∈ I.

Calculating the first derivative of f we obtain

f ′(x) = c exp(dx) + d(b+ cx) exp(dx)

= c exp(dx) + df(x)− ad.

Note that
c exp(dx) = f ′(x)− df(x) + ad. (14)

Using the previous derivative and the equality (14), we calculate the following derivatives

f ′′(x) = cd exp(dx) + df ′(x)

= f ′(x)− df(x) + ad+ df ′(x)

and

f ′′′(x) = f ′′(x)− df ′(x) + df ′′(x)

= f ′′(x) + d(f ′′(x)− f ′(x)).

Since f(x) = g(x) for x ∈ I, their derivatives also coincide in this interval,

f(x) = g(x) ∧ f ′(x) = g′(x) ∧ f ′′(x) = g′′(x) ∧ f ′′′(x) = g′′′(x), x ∈ I

Simplifying separately each equation, we obtain

f ′′′(x) = g′′′(x), x ∈ I ⇔ f ′′(x) + d(f ′′(x)− f ′(x)) = g′′(x) + d1(g
′′(x)− g′(x))

⇔ f ′′(x) + d(f ′′(x)− f ′(x)) = f ′′(x) + d1(f
′′(x)− f ′(x))

⇔ (f ′′(x)− f ′(x))(d− d1) = 0

⇔ d1 = d
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Using the fact that d1 = d, we have

f ′′(x) = g′′(x), x ∈ I ⇔ f ′(x)− df(x) + ad+ df ′(x) = g′(x)− d1g(x) + a1d1 + d1g
′(x)

⇔ f ′(x)− df(x) + ad+ df ′(x) = f ′(x)− df(x) + a1d+ df ′(x)

⇔ a1 = a

Using the equalities a1 = a and d1 = d, we conclude that

f ′(x) = g′(x), x ∈ I ⇔ c exp(dx) + df(x)− ad = c1 exp(d1x) + d1g(x)− a1d1
⇔ c exp(dx) + df(x)− ad = c1 exp(dx) + df(x)− ad
⇔ c1 = c

Finally, using a1 = a, c1 = c and d1 = d, we prove that

f(x) = g(x), x ∈ I ⇔ a+ (b+ cx) exp (dx) = a1 + (b1 + c1x) exp (d1x)

⇔ b1 = b

Summarizing a = a1 ∧ b = b1 ∧ c = c1 ∧ d = d1, which means that f(x) = g(x), x ∈ R.
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