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Discrete Time Markov Chains Definitions

Discrete Time Markov Chains

Definition: Markov chain

⇒ A Markov chain is a Markov process with discrete state space.

Definition: discrete-time Markov chain

⇒ A Markov chain is a Markov process with discrete state space.

Consider a (discrete-time) stochastic process {Xn : n = 0, 1, 2, . . .}, taking on a finite or countable
number of possible values (discrete stochastic process).

Unless otherwise mentioned, we will assume that S = {0, 1, 2, . . .}
If Xn = i , the process is said to be in state i at time n

If we have that

P(Xn+1 = j |X0 = i0,X1 = i1, . . . ,Xn = i) = P(Xn+1 = j)|Xn = i) = Pn,n+1
ij

then the SP is called Markov chain.
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Discrete Time Markov Chains Definitions

Discrete Time Markov Chains

Definition: homogeneous Markov chain

When the transition probabilities are independent of time (stationary transition probabilities):

Pn,n+1
ij = P

(1)
ij = Pij , Pn,n+s

ij = P
(s)
ij ∀s = 1, 2, . . .

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2019/20 4 / 39



Discrete Time Markov Chains Transition probability matrices

One-step transition probabilities

Matrix of the one-step transition probabilities

The one-step transition probabilities can be represented by a matrix P = [Pij ]:

P =


P00 P01 P02 . . .
P10 P11 P12 . . .
P20 P21 P22 . . .
· · · ·
· · · ·
· · · ·



Line i + 1 of P represents the probability distribution of Xn+1 when Xn = i :

Pij > 0, i , j = 0, 1, 2, . . .
∞∑
j=0

Pij = 1, i = 0, 1, 2, . . .
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Discrete Time Markov Chains Transition probability matrices

The probability of a path

Specification

If we know

P

pi = P(X0 = i), i = 0, 1, 2, . . .: the initial distribution

then the process is completely specified:

P(X0 = i0,X1 = i1, . . . ,Xn = in) =

= P(Xn = in|X0 = i0,X1 = i1, . . . ,Xn−1 = in−1)P(X0 = i0,X1 = i1, . . . ,Xn−1 = in−1)

= P(Xn = in|Xn−1 = in−1)P(X0 = i0,X1 = i1, . . . ,Xn−1 = in−1)

...

= Pin−1,inPin−2,in−1
. . .Pi0,i1pi0
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Discrete Time Markov Chains Transition probability matrices

Example

No claim discount (NCD)

A company offers discounts of 0%, 30% and 60% of the full premium. A policyholder’s status is
determined by the following rules:

A new policyholder starts at the 0% level;

If no claim is made during the current year then he moves up one discount level or remains
at the 60% level;

If one or more claims are made he moves down one level, or remains at the 0% discount.

Assuming that the probability of no claim per year is 3/4, determine P.
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Discrete Time Markov Chains Transition probability matrices

n-step transition probabilities and
the Chapman-Kolmogorov equations

n-step transition probabilities

P
(n)
ij = P(Xs+n = j |Xs = i)

Chapman-Kolmogorov equations

P
(m+n)
ij =

∞∑
k=0

P
(m)
ik p

(n)
kj

for all non-negative integers m and n with

P
(0)
ij =

{
1, i = j
0, i 6= j

, i.e. P(0) = I

Thus
P(m+n) = P(m)P(n)

and hence
P(n) = PP(n−1) = PPP(n−2) = · · · = Pn
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Discrete Time Markov Chains Transition probability matrices

Example

No claim discount (NCD)

Determine, for the NCD model considered,

The probability that the policyholder has a discount of 30% after being in the company for
three years.

The probability that a policyholder that is now with 30% discount ends up 4 years later at
the same level.
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Discrete Time Markov Chains Transition probability matrices

Example

Example

Consider a Markov chain with the following probability distribution at time n = 0 and one-step
transition probability matrix:

k P(X0 = k)

0 1/2
1 1/2
2 0
3 0

P =


1/4 1/4 1/4 1/4
1/2 1/2 0 0
1/2 0 1/2 0

0 1/3 1/3 1/3



Compute P(X2 = 3).
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Discrete Time Markov Chains First step analysis

First step analysis

First step analysis

Quite a number of functionals on a Markov chain can be evaluated by a technique called first step
analysis.

Example: first step analysis

Consider a Markov chain with S = {0, 1, 2} such that

P =

 1 0 0
α β γ
0 0 1


with α, β, γ > 0 and α+ β + γ = 1

In which of the states is the chain absorbed?

How long does it take to reach one of the absorbing states?

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2019/20 11 / 39



Discrete Time Markov Chains First step analysis

First step analysis

Example: first step analysis

Let
T = min{n > 0 : Xn = 0 or Xn = 2}

be the time of absorption of the process.

Probability that the chain is absorbed by state 0

u = P(XT = 0|X0 = 1)

Expected time to absorption
v = E [T |X0 = 1]

After the first step the process is in one of the states and

P(XT = 0|X1 = 0) = 1

P(XT = 0|X1 = 1) = u

P(XT = 0|X1 = 2) = 0
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Discrete Time Markov Chains First step analysis

First step analysis

Example: first step analysis

Using the theorem of the total probability

u = P(XT = 0|X0 = 1)

=
2∑

k=0

P(XT = 0|X0 = 1,X1 = k)P(X1 = k|X0 = 1)

=
2∑

k=0

P(XT = 0|X1 = k)P(X1 = k|X0 = 1)

= α+ uβ

Hence
u =

α

1− β
=

α

α+ γ

Show that

v =
1

1− β
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Discrete Time Markov Chains First step analysis

First step analysis

First step analysis

Let a finite Markov chain {Xn} with states n = 0, 1, . . . ,N, numbered in such way that the first r
states are transient and the remaining r , . . . ,N are absorbing.
Then P may be written as

P =

[
Q R
0 I

]
where Qij = Pij for 0 6 i , j < r

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2019/20 14 / 39



Discrete Time Markov Chains First step analysis

First step analysis

First step analysis

Let Uik be the probability of absorption in k when the process starts at i (r 6 k 6 N and 0 6 i < r):

Uik = P(absorption in k|X0 = i)

=
N∑
j=0

P(absorption in k|X0 = i ,X1 = j)Pij

= Pik +
N∑

j=r,j 6=k

(
Pij × 0

)
+

r−1∑
j=0

(
Pij Ujk

)
Thus

Uik = Pik +

r−1∑
j=0

Pij Ujk , for i = 0, 1, . . . , r − 1
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Discrete Time Markov Chains First step analysis

First step analysis

First step analysis

Let T be the time of absorption:

T = min{n > 0 : Xn > r}

and suppose that there is a rate g(i), i = 0, . . . , r − 1, associated to the transient states.
Let wi be the mean rate until absorption if the process starts at i :

wi = E

[
T−1∑
n=0

g(Xn)|X0 = i

]

The choice g(i) = 1, for all i , gives vi , the mean time until absorption starting from i .

The choice

g(i) = δik =

{
1, if i = k
0, if i 6= k

gives wik , the mean number of visits to state k before absorption.
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Discrete Time Markov Chains First step analysis

First step analysis

First step analysis

We have (from the total probability theorem)

wi = g(i) +

r−1∑
j=0

wjPij , for i = 0, 1, . . . , r − 1

If g(i) = 1 for all i , we obtain

vi = 1 +

r−1∑
j=0

vjPij , for i = 0, 1, . . . , r − 1

If g(i) = δik , we obtain

wik = δik +

r−1∑
j=0

wjkPij , for i = 0, 1, . . . , r − 1
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Discrete Time Markov Chains First step analysis

First step analysis

Example

Consider the following Markov chain:

P =


0 1 2 3

0 1 0 0 0
1 0.1 0.2 0.5 0.2
2 0.1 0.2 0.6 0.1
3 0 0 0 1


Consider that the chain starts at state 1.

What is the probability that the chain is absorbed in state 0?

What is the mean number of steps until abosorption?

What is the mean number of visits to state 2 before absorption?
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Discrete Time Markov Chains First step analysis

First step analysis

Example

Consider a NCD model as follows: there are four levels of discount: no discount, 25% discount;
40% discount and 60% discount. The rules for moving up the discount scale are as in the previous
example, but in the case of a claim during the current year, the discount status moves down one
or two steps according to whether or not the previous-year was claim free.

1) Describe the model as a Markov chain, by defining the states and the one-step transition
probability matrix.

2) If you are at 0% discount, what is the probability that you are on the maximum discount
after 5 years.

3) Calculate the mean number of years that a policyholder has a 25% discount before he
reaches the maximum discount.

4) Determine the mean number of years that a policyholder just entering the company takes to
get, for the first time, to the maximum discount level.
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Discrete Time Markov Chains Classification of states

Classification of states

Definition

State j is accessible (i → j) from state i if P
(n)
ij > 0, for some n > 0.

Definition

States i and j communicate (i ←→ j) if i is accessible from j and j is accessible from i :

∃n,m : P
(n)
ij > 0 and P

(m)
ji > 0

Se não , ou P
(n)
ij = 0, ∀n, ou P

(n)
ji = 0,∀n.

Theorem

The concept of communication is an equivalence relation: (reflexivity; symmetry and transitivity).

Equivalence classes
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Discrete Time Markov Chains Classification of states

Classification of states

Example

Consider the Markov chain

A =



1 2 3 4 5 6

1 1/2 1/2 0 0 0 0
2 1/4 3/4 0 0 0 0
3 1/4 1/4 1/4 1/4 0 0
4 1/4 0 1/4 1/4 0 1/4
5 0 0 0 0 1/2 1/2
6 0 0 0 0 1/2 1/2


Make a partition of the state space in equivalent classes.
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Discrete Time Markov Chains Classification of states

Classification of states

Example

Consider the Markov chain

P =


1 2 3 4 5

1 1/2 1/2 0 0 0
2 1/4 3/4 0 0 0
3 0 0 0 1 0
4 0 0 1/2 0 1/2
5 0 0 0 1 0


Make a partition of the state space in equivalent classes.
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Discrete Time Markov Chains Classification of states

Classification of states

Example

Let S = {0, 1, 2, . . . , a} and

P =



0 1 2 3 · · · a− 2 a− 1 a

0 1 0 0 0 · · · 0 0 0
1 q 0 p 0 · · · 0 0 0
2 0 q 0 p · · · 0 0 0
...
a− 1 0 0 0 0 · · · q 0 p
a 0 0 0 0 · · · 0 0 1


Make a partition of the state space in equivalent classes.
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Discrete Time Markov Chains Classification of states

Classification of states

Definition: irreducible Markov chain

A Markov chain is said to be irreducible if the equivalence relation (←→) induces only one class.

Definition: period of a state

The period of state i , d(i) is the greatest common divisor of all integer n > 1 such that P
(n)
ii > 0:

d(i) = gcd{n > 1 : P
(n)
ii > 0}

If P
(n)
ii = 0, for all n > 1, we define d(i) = 0.

Definition: aperiodic Markov chain

A Markov chain in which each state has period 1 is called aperiodic.

Theorem

Two communicating states have the same period:

i ←→ j =⇒ d(i) = d(j)
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Discrete Time Markov Chains Classification of states

Classification of states

Theorem

If state i has period d(i), then there exists an integer N dependent of i , such that for all n > N
we have

P
(n d(i))
ii > 0

i.e. the return to state i can occur at all the sufficiently large multiples of d(i).
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Discrete Time Markov Chains Classification of states

Classification of states

f
(n)
ii

For an arbitrary state i , consider

f
(n)
ii = P(Xn = i and Xk 6= i , k = 1, 2, . . . , n − 1|X0 = i)

f
(n)
ii is the probability that the first return to state i occurs in n steps.

f
(n)
ii can be computed recursively

P
(n)
ii =

n∑
k=0

f
(k)
ii P

(n−k)
ii , ∀n > 1

with (assuming) f
(0)
ii = 0, for all i .
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Discrete Time Markov Chains Classification of states

Classification of states

f
(n)
ij

For an arbitrary state i , consider

f
(n)
ij = P(Xn = j and Xk 6= j , k = 1, 2, . . . , n − 1|X0 = i)

f
(n)
ij is the probability that the first return to state j , coming from state i , occurs in n steps.

f
(n)
ij can be computed recursively

P
(n)
ij =

n∑
k=0

f
(k)
ij P

(n−k)
jj , i 6= j , ∀n > 1
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Discrete Time Markov Chains Classification of states

Classification of states

Probability of ever return to state i

fii =
∞∑
n=0

f
(n)
ii

Definition: recurrent and transient state

State i is recurrent if fii = 1.

State i is transient when fii < 1.

Theorem

State i is recurrent if and only if
∑∞

n=0 P
(n)
ii =∞

Coroliary

If i ←→ j and i is recurrent, then j is recurrent.
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Discrete Time Markov Chains Classification of states

Classification of states

If i is transient, f
(n)
ii is not a proper distribution.

Definition: expected number of transitions needed to return to state i

mi =


+∞∑
n=1

n f
(n)
ii , if i is recurrent

+∞, if i is transient

Definition: null recurrent and positive recurrent

State i is null recurrent if it is recurrent and mi =∞.

State i is positive recurrent if it is recurrent and mi <∞.

Definition: ergodic state

A state is called ergodic if it is positive recurrent and aperiodic.
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Discrete Time Markov Chains Classification of states

Classification of states

Definition: closed class

A set C of states is a closed class if

Pij = 0, ∀i ∈ C , j /∈ C

Definition: irreducible class

A set C of states is an irreducible class if i ←→ j , for all i , j ∈ C .

Definition: absorbing state

State i is absorbing if Pii = 1.

Definition

An irreducible class C is aperiodic (or recurrent, or null recurrent, ...) if all the states in C have
that property.
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Discrete Time Markov Chains Classification of states

Classification of states

Theorem

If S is finite, then

At least one state is recurrent

All recurrent states are positive recurrent

Theorem

The recurrent classes are closed.

In a finite chain all the closed irreducible class is recurrent.

Theorem: decomposition

Given a state space S of a Markov chain, there exists a unique partition of S

S = T ∪ C1 ∪ C2 ∪ . . .

where T is the class of transient states and C ’s are closed, irreducible classes of recurrent states
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Discrete Time Markov Chains Limit behaviour

Stationary probability distribution

Stationary probability distribution

π = [π0, π1, . . .] is a stationary probability distribution for the Markov chain with transition prob-
ability matrix P if the following conditions hold:

π = πP and
∑
k∈S

πk = 1 πk > 0, k ∈ S

π is the left eigenvector corresponding to the eigenvalue 1 (or the eigenvector corresponding
to the eigenvalue 1 of PT ), normalised in such way that it is a probability distribution.
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Discrete Time Markov Chains Limit behaviour

Limit distribution

Remark

The theory of Markov chains turns out to be very simple when the number of states is finite.
In that case, if the chain is irreducible than all states are positive recurrent.

Definition: regular Markov chain

A probability matrix P, with states 0, 1, ...,N, or the corresponding Markov chain, is said to be
regular if there exists a k such that all the elements of the matrix Pn, n > k are strictly positive.

A markov chain is regular if at some point in time all elements of the transition probability
matrix are positive.

Theorem

A finite, irreducible and aperiodic transition probability matrix P is regular.
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Discrete Time Markov Chains Limit behaviour

Limit distribution

Definition: limiting distribution

The limiting distribution π = (π0, π1, ..., πN) is given by

πj = lim
n→∞

P
(n)
ij > 0.

Example

P =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0



P100 ≈

 0.33333 0.33333 0.33333
0.33333 0.33333 0.33333
0.33333 0.33333 0.33333
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Discrete Time Markov Chains Limit behaviour

Limit distribution

Example

Consider the Markov chain with the following transition matrix:

P =



0 1 2 3 4 5 6

0 0.9 0.1 0 0 0 0 0
1 0.9 0 0.1 0 0 0 0
2 0.9 0 0 0.1 0 0 0
3 0.9 0 0 0 0.1 0 0
4 0.9 0 0 0 0 0.1 0
5 0.9 0 0 0 0 0 0.1
6 0.9 0 0 0 0 0 0.1


Long run:

P8 =



. 9 .0 9 .00 9 .000 9 .0000 9 9.0 × 10−6 1.0 × 10−6

. 9 .0 9 .00 9 .000 9 .0000 9 9.0 × 10−6 1.0 × 10−6

. 9 .0 9 .00 9 .000 9 .0000 9 9.0 × 10−6 1.0 × 10−6

. 9 .0 9 .00 9 .000 9 .0000 9 9.0 × 10−6 1.0 × 10−6

. 9 .0 9 .00 9 .000 9 .0000 9 9.0 × 10−6 1.0 × 10−6

. 9 .0 9 .00 9 .000 9 .0000 9 9.0 × 10−6 1.0 × 10−6

. 9 .0 9 .00 9 .000 9 .0000 9 9.0 × 10−6 1.0 × 10−6
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Discrete Time Markov Chains Limit behaviour

Stationary and limit distributions

Example

P =

[
0 1
1 0

]
→ P2 =

[
1 0
0 1

]
→ P3 =

[
0 1
1 0

]
· · ·

P does not have limiting distribution:

P
(n)
ii =

{
1 i = 1, 2 n even
0 i = 1, 2 n odd

⇒ @ dist.lim.

(P is not regular)
But P has stationary distribution:

[
1/2 1/2

]︸ ︷︷ ︸
π

[
0 1
1 0

]
︸ ︷︷ ︸

P

=

[
1/2
1/2

]
︸ ︷︷ ︸

π
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Discrete Time Markov Chains Limit behaviour

Limit distribution

Theorem: regular chains

A Markov chain with a regular transition probability matrix has a limiting distribution, which is
independent of the initial state and is given by the only positive solution to

π = πP,
N∑

k=0

πk = 1

Remarks

πj is the probability of finding the process in state j , when the process has been in operation
for a long time (independent of the initial state):

Pn −→

 π1 π2 · · · πN
π1 π2 · · · πN
...

...
...


︸ ︷︷ ︸

all rows are equal to π

as n→ +∞
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Discrete Time Markov Chains Limit behaviour

Limit distribution

Remarks

πj also represents the long run fraction of time that the process {Xn} spends in state j .

For a recurrent, irreducible and aperiodic Markov chain we have

lim
n→∞

P
(n)
ij = πj =

1

mj
, ∀i , j = 1, . . . ,N

(mj is the expected number of steps to return to state j)
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Discrete Time Markov Chains Limit behaviour

Limit distribution

Example

Consider

P =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


P is regular and computationally we can show that

P100 ≈

 0.33333 0.33333 0.33333
0.33333 0.33333 0.33333
0.33333 0.33333 0.33333


Show that the limit is actually

π =
[
π1 π2 π3

]
=
[

1/3 1/3 1/3
]

solving equation

πP = π ⇐⇒

 1/2π2 + 1/2π3 = π1

1/2π1 + 1/2π3 = π2

1/2π1 + 1/2π2 = π3
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