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Continuous time homogeneous Markov chains Introduction

Continuous time homogeneous Markov chains

Definition: continuous time homogeneous Markov chain

Markov process, with countable state space S, in continuous time, that has stationary transition
rates:

@ For all i,j € S exists a probability function p;(t) such that

P(X(s +t) = jIX(s) = i) = p;(t), for all s, t >0

independent of s.

Remark

For a time homogeneous Markov process {X(t)}+>0, given its evolution up to any “current” time
s, the probabilistic description of its behavior at all future times depends only on the current state
X(s) =i, and not on the previous history of the process nor on the time s itself.
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T et FreEkiiy me
The transition probability matrix

Definition: transition probability matrix at time t

For each t > 0, we define the matrix P(t) = [p;(t)]

ij€ES’
v
Remark
Note that
o For each t, P(t) is a stochastic matrix:
pi(t) >0 Vij€S and > pi(t)=1Vies
JES
o p;(0) =1, if i =j and p;(0) =0, if i # j:
pij(0) = 6jj <= P(0) =
.
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T et FreEkiiy me
Chapman-Kolmogorov equations

Chapman-Kolmogorov equations

pi(s+t) =Y puls)p(t), ts>0, Vij€S
keS

The transition matrix P becomes

[pU(t + 5)],',1'65 =P(t+s) = P(s)P(t)
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The transition probability matrix
The matrix of transition rates

o We will assume that the probability functions p;j(t) are differentiable.

Definition: transition rates

The transition rate, intensity rate or force of transition, from i to j is defined by
qij =p;(0) Vij€S
v
Transition rates
Then, for all t,h >0,
P(X(t+h)=jX(t)=1i) = p;(h) (homogeneous process)
= p;j(0) + gjjh+o(h), as h—0 (1st order approximation)
= dj+qjh+o(h), ash—0
that is, gj is the (instataneous) transition rate of the process from state /i to state j, and
1+ gjjh+ o(h) i=j
(h) = ij ) =]
Pi(h) { ajh+o(h),  i#]
v
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(@I TR I T IENIER VET(VAG EYIEI T he transition probability matrix

The matrix of transition rates

Remark
Since Zjes pij(h) =1 e pii(h) = 1+ gjjh, then
gi=-»_q; and > ;=0
J#i JjES
v
Definition: Matrix of transition rates
The matrix
Q= [qij]i,jes
is the transition rate matrix, or intensity matrix, or generator, of the process.
@ We assume that:
> q;=0, Vi
JjES
0<gj<oo, Vi#j
0< —qgji<oo, Vi
v
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The transition probability matrix
The matrix of transition rates

Remarks
@ gj; are not probablities
o It is possible to build the transition probability matrix from the matrix of transition rates

@ The matrix of transition rates specifies the probability law of the process

LISBON
SCHOOL OF
ECONOMICS &
MANAGEMEN
UNVERSIDADE DELIS80

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2019/20 8 /28



(@I TR I T IENIER VET(VAG EYIEI T he transition probability matrix

The matrix of transition rates

Example
Consider the time continuous Poisson process, such that
—At (—1i)
e At
put) = S A0
G-
Build the generator matrix of the process.
v
Example
Consider the Markov process with 2 states and the following transition rates.
0.5
State 1 State 2
12
-0.5 0.5
1.2 -1.2
v

LISBON
SCHOOL OF

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes

ECONOMICS &
MANAGEME!

UNVERSIADE DELISG

2019/20

9/28



The forward and backward differential equations
The forward differential equations

Theorem: forward differential equations

P,/j(t) = Z pik(t)q

kes

under the initial conditions p;;(0) = ;.
In matrix form:

P'(t) = P(HQ

PO) = I
Proof

pii(t+h) = pu(t)pii(h) = -+ =D pu(t) [awih + o(h)] + pj(t)
kes kes
v
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The forward and backward differential equations
The backward differential equations

Theorem: backward differential equations

Dada a condio inicial, tem-se

() = qupii(t)

kes

under the initial conditions p;;(0) = §;;.
In matrix form:

{ P(t) = QP(t)
P(0) I
Proof
pi(t+h) = pi(h)pij(t) = - = > lah + o(h)] pii(t) + py(t)
kes kes )
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The forward and backward differential equations
The forward and backward differential equations

Example

state 0 state 1

d
Epm(t) = Poo(t)po1 + Po1(t)u11 = 0,01Pgo(t) — 0,10Po1(t)
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The forward and backward differential equations
The forward and backward differential equations

Example

General two state process, S = {0,1}
Q= { A } , A p>0

Find P(t).
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The forward and backward differential equations
The forward and backward differential equations

Example

Time homogeneous health-sickness-death model.

c
H: Healthy S: Sick
P
P
n v
D: Dead
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(@ TSR AT M T (NI ER VETIGVA BTNl The forward and backward differential equations
. .
Holding times

Holding time

To = inf{t : X(t) # X(0)}

Theorem

The holding time in any state i € S of a time homogeneous Markov process with transition rate

1
matrix Q is exponential distributed with mean ——.
qii
This is to say, that fi
p(t) = P(To > t[X(0) = i) = et

where
@ p(t) is the probability that the process remains in state i throughout a perid of length t.
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(@ TSR AT M T (NI ER VETIGVA BTNl The forward and backward differential equations
. .
Holding times

Notation
® Sometimes we use g; = —gjj, so p(t) = e~ 9t
o p(t) is the probability that the process will remain in state i during an interval of range t:
p=(t) = P(To > t[X(0) = i)

o pji(t) is the probability that, being at state i, after a time interval of length t we are still
back at state i:

pii(t) = P(X(t) = i|X(0) = i)
o Note that pz(t) # pii(t)
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(@ TSR AT M T (NI ER VETIGVA BTNl The forward and backward differential equations
. .
Holding times

Holding time at state i
1
pr(t) = P(To > t1X(0) = i) = e%® = &=, T ~ Exp <f—)
qll y
Proof
Pt + h) = pr(t)pz(h)
pr(h) =1—=> pj(h) and pj(h) = hqy + o(h) for j # i
J#i
Hence
pr(t + ) = py(t) [1 + ha + o(h)]
from where
Pi(t) = qiipy(t)
So, given that p-(0) = 1, we find
m(1_-) — gliit
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(@ TSR AT M T (NI ER VETIGVA BTNl The forward and backward differential equations
. .
Holding times

Theorem
The probability that the process goes into state j when it leaves state i is i
—qii )
Proof
P(X(t+h) =jIX(t)=1i) = gqjh+o(h), i#]
PIX(t+h) #ilX(t)=i) = —qh+o(h)
Hence
. . : P(X(t+h) =j,j #i|X(t) =)
P(X(t+ h) =j|X(t) =i, X(t+h N = - -
(X(e+ ) = JIX(2) = 1, X(¢ + ) £ 1) PR TR =)
_ gih+o(h) qjj
—qjih + o(h) —qii )
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(@ TSR AT M T (NI ER VETIGVA BTNl The forward and backward differential equations
. .
Holding times

Definition: m;
o Let m; be the expected time for a process to reach state k given that it is currently in state /.

@ Then, m; can be computed using a recursive formula

1 .
mi = —— + kil

mj
qii ki qii
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[T TSR AT I T IENIER VETGVA \EYIEI  The embedded Markov chain
.

Jumping chain or embedded Markov chain

Definition: jumping chain

Let
o {X(t)}+>0 be a CTMC
@ @ be the matrix of transition rates (jump intensities) of the process
e W, be the time of the n-th jump:

Th= Wy — W, P(Ty > t|X(W,) = i) = e%it

and

Consider the process
o X =X(Wp),n>0

Then
o {X*},>0 is a Markov chain in discrete time, called the jumping chain or the embedded

Markov chain.
P* = (p})ijes
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[T TSR AT I T IENIER VETGVA \EYIEI  The embedded Markov chain

Jumping chain or embedded Markov chain

Jumping chain of a CTMC

”=(5)
Pi ijes

such that ai
ppo= A
qii if q”<0
p; = 0
pio= 0, ifj#i N
{ P;‘; — 1 [ qufo
v
Remarks

@ Here we are interested in the time instants at which jumps occur
@ The transition probability from i to j is the probability that the process jumps from i to j.

o We move from a continuous time (homogeneous) MC to a discrete time (homogeneous) MC
v
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[T TSR AT I T IENIER VETGVA \EYIEI  The embedded Markov chain

Jumping chain or embedded Markov chain

Reachable state

State j is said to be reachable from stacte i/ for a CTMC if

P(X(s) =j|X(0) =i) = pjj(s) >0, forsomes>0

Communicating states and classes

@ As with discrete-time chains, i and j are said to communicate if state j is reachable from
state /, and state / is reachable from state j

o It is immediate that / and j communicate in continuous time if and only if they do so for the
embedded discrete-time chain {X;'} -, i.e. they communicate in continuous-time if and
only if they do so at transition epochs

@ Thus, once again, we can partition the state space into disjoint communication classes
S=GUGUGU:--

@ An irreducible chain is a chain for which all states communicate (S = C;, one
communication class)
@ A CTMC is irreducible if and only if its embedded chain is irreducible

@ Q is said to be irreducible if P* is irreducible

v
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[T TSR AT I T IENIER VETGVA \EYIEI  The embedded Markov chain

Jumping chain or embedded Markov chain

Recurrent state
o State i is called recurrent if the chain will re-visit state i/ with certainty (with probability 1)

@ Otherwise, the state is transient

@ State i is is recurrent/transient for a CTMC if and only if it is recurrent/transient for the
embedded discretre-time chain (although positive recurrent/null recurrent may be different in
the two chains)

Periodicity of states

There are no problems of periodicity for the CTMC, although there may exist for {X;}, -,
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MislemoeddediMarkodehin
Jumping chain or embedded Markov chain

Example

Consider the Markov chain in continuous time with the following generator matrix:

-4 1 0 0o 3
2 -6 3 1 0
Q= 0 0 -5 5 0
0 0 4 -4 0
0 0 0 0 0

@ Classify the states.
@ Calculate the probability that the process is absorbed at state 5 if it starts from state 1.
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Stttvery e (g el
Stationary and limiting distribution for a single closed class

Definition

Consider an irreducible CTMC. A probability distribution in S

m >0, Vj€ES and > mi=1
JES

is stationary if and only if, for all t > 0

wP(t) ==

@ It is also called equilibrium distribution and it gives the long term proportion of time spent
in each state.

o If 7 is stationary, then 7; > 0, for all j
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Stttvery e (g el
Stationary and limiting distribution for a single closed class

Theorem
A distribution 7 is stationary if and only if
Q=0
v
Theorem
Let S be the a single closed class (irreducible chain) of a CTMC. Then, one of the follwoing two
is true
1) There is a unique stationary distribution 7 and
tln;o pij(t)y=m;, Vij€S
(if S is finite, this case necessarily holds)
2) There is no stationary distribution and
Jim pj(t) =0, VijeS |
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Stttvery e (g el
Stationary and limiting distribution for a single closed class

Example

state 0 state 1

Find the equilibrium distribution of the chain.
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(@A ITSITER T SN T (SIS ER VET VA BT Stationary and limiting distributions

Exercise

Vehicles in a certain country are required to be assessed every year for road-worthiness. At one
vehicle assessment centre, drivers wait for an average of 15 minutes before the road-worthiness
assessment of their vehicle commences. The assessment takes on average 20 minutes to complete.
Following the assessment, 80% of vehicles are passed as road-worthy allowing the driver to drive
home. A further 15% of vehicles are categorised as “minor fail”, these vehicles require on average
30 minuutes of repair work before the driver is allowed to drive home. The remaining 5% of vehicles
are categorised as ‘significant fail”, these vehicles require on average three hours of repair work
before the driver can go home.

A continuous-time Markov model is to be used to model the operation of the vehicle assessment
centre, with states W (waiting for the assessment), A (assessment taking place), M (minor repair
taking place), S (significant repair taking palce) and H (travelling home).

o Explain what assumption must be made about the distribution of the time spent in each state

@ Write down the generator matrix of this process.
o Use Kolmogorov's Forward Equations to:
o Write down differential equations satisfied by pwwm(t) and by pwa(t)
o Verify that pua(t) = 4e~ /2 — 4e~%/%5 for t > 0, where t is measured in minutes.
o Derive an expression for pwum(t), for t > 0.
o Let T; be the expected length of time (in minutes) until the vehicle can be driven home
given that the assessment process is currently in state /.
e Explain why Ty = 15 4 Tax.
o Derive corresponding equations for T4, Ty and Ts.
o Calculate Ty .

v
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