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Continuous time homogeneous Markov chains Introduction

Continuous time homogeneous Markov chains

Definition: continuous time homogeneous Markov chain

Markov process, with countable state space S , in continuous time, that has stationary transition
rates:

For all i , j ∈ S exists a probability function pij (t) such that

P(X (s + t) = j |X (s) = i) = pij (t), for all s, t > 0

independent of s.

Remark

For a time homogeneous Markov process {X (t)}t>0, given its evolution up to any “current” time
s, the probabilistic description of its behavior at all future times depends only on the current state
X (s) = i , and not on the previous history of the process nor on the time s itself.

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2019/20 3 / 28



Continuous time homogeneous Markov chains The transition probability matrix

The transition probability matrix

Definition: transition probability matrix at time t

For each t > 0, we define the matrix P(t) =
[
pij (t)

]
i,j∈S .

Remark

Note that

For each t, P(t) is a stochastic matrix:

pij (t) > 0 ∀i , j ∈ S and
∑
j∈S

pij (t) = 1 ∀i ∈ S

pij (0) = 1, if i = j and pij (0) = 0, if i 6= j :

pij (0) = δij ⇐⇒ P(0) = I
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Continuous time homogeneous Markov chains The transition probability matrix

Chapman-Kolmogorov equations

Chapman-Kolmogorov equations

pij (s + t) =
∑
k∈S

pik (s)pkj (t), t, s > 0, ∀i , j ∈ S

The transition matrix P becomes[
pij (t + s)

]
i,j∈S = P(t + s) = P(s)P(t)
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Continuous time homogeneous Markov chains The transition probability matrix

The matrix of transition rates

We will assume that the probability functions pij (t) are differentiable.

Definition: transition rates

The transition rate, intensity rate or force of transition, from i to j is defined by

qij = p′ij (0) ∀i , j ∈ S

Transition rates

Then, for all t, h > 0,

P(X (t + h) = j |X (t) = i) = pij (h) (homogeneous process)

= pij (0) + qijh + o(h), as h→ 0 (1st order approximation)

= δij + qijh + o(h), as h→ 0

that is, qij is the (instataneous) transition rate of the process from state i to state j , and

pij (h) =

{
1 + qijh + o(h), i = j

qijh + o(h), i 6= j
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Continuous time homogeneous Markov chains The transition probability matrix

The matrix of transition rates

Remark

Since
∑

j∈S pij (h) = 1 e pii (h) = 1 + qiih, then

qii = −
∑
j 6=i

qij and
∑
j∈S

qij = 0

Definition: Matrix of transition rates

The matrix
Q =

[
qij
]
i,j∈S

is the transition rate matrix, or intensity matrix, or generator, of the process.

We assume that: ∑
j∈S

qij = 0, ∀i

0 6 qij <∞, ∀i 6= j

0 6 −qii <∞, ∀i
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Continuous time homogeneous Markov chains The transition probability matrix

The matrix of transition rates

Remarks

qij are not probablities

It is possible to build the transition probability matrix from the matrix of transition rates

The matrix of transition rates specifies the probability law of the process
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Continuous time homogeneous Markov chains The transition probability matrix

The matrix of transition rates

Example

Consider the time continuous Poisson process, such that

pij (t) =
e−λt(λt)(j−i)

(j − i)!

Build the generator matrix of the process.

Example

Consider the Markov process with 2 states and the following transition rates.
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Continuous time homogeneous Markov chains The forward and backward differential equations

The forward differential equations

Theorem: forward differential equations

p′ij (t) =
∑
k∈S

pik (t)qkj

under the initial conditions pij (0) = δij .
In matrix form: {

P′(t) = P(t)Q
P(0) = I

Proof

pij (t + h) =
∑
k∈S

pik (t)pkj (h) = · · · =
∑
k∈S

pik (t)
[
qkjh + o(h)

]
+ pij (t)
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Continuous time homogeneous Markov chains The forward and backward differential equations

The backward differential equations

Theorem: backward differential equations

Dada a condio inicial, tem-se
p′ij (t) =

∑
k∈S

qikpkj (t)

under the initial conditions pij (0) = δij .
In matrix form: {

P′(t) = QP(t)
P(0) = I

Proof

pij (t + h) =
∑
k∈S

pik (h)pkj (t) = · · · =
∑
k∈S

[qikh + o(h)] pkj (t) + pij (t)
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Continuous time homogeneous Markov chains The forward and backward differential equations

The forward and backward differential equations

Example

d

dt
P01(t) = P00(t)µ01 + P01(t)µ11 = 0, 01P00(t)− 0, 10P01(t)
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Continuous time homogeneous Markov chains The forward and backward differential equations

The forward and backward differential equations

Example

General two state process, S = {0, 1}

Q =

[
−λ λ
µ −µ

]
, λ, µ > 0

Find P(t).
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Continuous time homogeneous Markov chains The forward and backward differential equations

The forward and backward differential equations

Example

Time homogeneous health-sickness-death model.
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Continuous time homogeneous Markov chains The forward and backward differential equations

Holding times

Holding time

T0 = inf{t : X (t) 6= X (0)}

Theorem

The holding time in any state i ∈ S of a time homogeneous Markov process with transition rate

matrix Q is exponential distributed with mean −
1

qii
.

This is to say, that
pii (t) = P(T0 > t|X (0) = i) = eqii t

where

pii (t) is the probability that the process remains in state i throughout a perid of length t.
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Continuous time homogeneous Markov chains The forward and backward differential equations

Holding times

Notation

Sometimes we use qi = −qii , so pii (t) = e−qi t

pii (t) is the probability that the process will remain in state i during an interval of range t:

pii (t) = P(T0 > t|X (0) = i)

pii (t) is the probability that, being at state i , after a time interval of length t we are still
back at state i :

pii (t) = P(X (t) = i |X (0) = i)

Note that pii (t) 6= pii (t)

Master in Actuarial Sciences (ISEG - Lisbon) Probability and Stochastic Processes 2019/20 16 / 28



Continuous time homogeneous Markov chains The forward and backward differential equations

Holding times

Holding time at state i

pii (t) = P(T0 > t|X (0) = i) = eqii t = e−qi t , Ti ∼ Exp

(
−

1

qii

)

Proof

pii (t + h) = pii (t)pii (h)

pii (h) = 1−
∑
j 6=i

pij (h) and pij (h) = hqij + o(h) for j 6= i

Hence
pii (t + h) = pii (t) [1 + hqii + o(h)]

from where
p′
ii

(t) = qiipii (t)

So, given that pii (0) = 1, we find

pii (t) = eqii t
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Continuous time homogeneous Markov chains The forward and backward differential equations

Holding times

Theorem

The probability that the process goes into state j when it leaves state i is
qij

−qii
.

Proof

P(X (t + h) = j |X (t) = i) = qijh + o(h), i 6= j

P(X (t + h) 6= i |X (t) = i) = −qiih + o(h)

Hence

P(X (t + h) = j |X (t) = i ,X (t + h) 6= i) =
P(X (t + h) = j , j 6= i |X (t) = i)

P(X (t + h) 6= i |X (t) = i)

=
qijh + o(h)

−qiih + o(h)
−→

qij

−qii
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Continuous time homogeneous Markov chains The forward and backward differential equations

Holding times

Definition: mi

Let mi be the expected time for a process to reach state k given that it is currently in state i .

Then, mi can be computed using a recursive formula

mi =
1

−qii
+
∑
j 6=k,i

qij

−qii
mj
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Continuous time homogeneous Markov chains The embedded Markov chain

Jumping chain or embedded Markov chain

Definition: jumping chain

Let

{X (t)}t>0 be a CTMC

Q be the matrix of transition rates (jump intensities) of the process

Wn be the time of the n-th jump:

W0 = 0, Tn = Wn+1 −Wn and P(Tn > t|X (Wn) = i) = eqii t

Consider the process

X∗n = X (Wn), n > 0

Then

{X∗n }n>0 is a Markov chain in discrete time, called the jumping chain or the embedded
Markov chain.

P∗ = (p∗ij )i,j∈S
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Continuous time homogeneous Markov chains The embedded Markov chain

Jumping chain or embedded Markov chain

Jumping chain of a CTMC

P∗ =
(
p∗ij

)
i,j∈S

such that 


p∗ij =

qij

−qii
, if j 6= i

p∗ii = 0

if qii < 0

{
p∗ij = 0, if j 6= i

p∗ii = 1
if qii = 0

Remarks

Here we are interested in the time instants at which jumps occur

The transition probability from i to j is the probability that the process jumps from i to j .

We move from a continuous time (homogeneous) MC to a discrete time (homogeneous) MC
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Continuous time homogeneous Markov chains The embedded Markov chain

Jumping chain or embedded Markov chain

Reachable state

State j is said to be reachable from stacte i for a CTMC if

P(X (s) = j |X (0) = i) = pij (s) > 0, for some s > 0

Communicating states and classes

As with discrete-time chains, i and j are said to communicate if state j is reachable from
state i , and state i is reachable from state j

It is immediate that i and j communicate in continuous time if and only if they do so for the
embedded discrete-time chain {X∗n }n>0, i.e. they communicate in continuous-time if and
only if they do so at transition epochs

Thus, once again, we can partition the state space into disjoint communication classes

S = C1 ∪ C2 ∪ C3 ∪ · · ·

An irreducible chain is a chain for which all states communicate (S = C1, one
communication class)

A CTMC is irreducible if and only if its embedded chain is irreducible

Q is said to be irreducible if P∗ is irreducible
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Continuous time homogeneous Markov chains The embedded Markov chain

Jumping chain or embedded Markov chain

Recurrent state

State i is called recurrent if the chain will re-visit state i with certainty (with probability 1)

Otherwise, the state is transient

State i is is recurrent/transient for a CTMC if and only if it is recurrent/transient for the
embedded discretre-time chain (although positive recurrent/null recurrent may be different in
the two chains)

Periodicity of states

There are no problems of periodicity for the CTMC, although there may exist for {X∗n }n>0
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Continuous time homogeneous Markov chains The embedded Markov chain

Jumping chain or embedded Markov chain

Example

Consider the Markov chain in continuous time with the following generator matrix:

Q =


−4 1 0 0 3
2 −6 3 1 0
0 0 −5 5 0
0 0 4 −4 0
0 0 0 0 0


1 Classify the states.

2 Calculate the probability that the process is absorbed at state 5 if it starts from state 1.
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Continuous time homogeneous Markov chains Stationary and limiting distributions

Stationary and limiting distribution for a single closed class

Definition

Consider an irreducible CTMC. A probability distribution in S

πj > 0, ∀j ∈ S and
∑
j∈S

πj = 1

is stationary if and only if, for all t > 0

πP(t) = π

It is also called equilibrium distribution and it gives the long term proportion of time spent
in each state.

If π is stationary, then πj > 0, for all j
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Continuous time homogeneous Markov chains Stationary and limiting distributions

Stationary and limiting distribution for a single closed class

Theorem

A distribution π is stationary if and only if

πQ = 0

Theorem

Let S be the a single closed class (irreducible chain) of a CTMC. Then, one of the follwoing two
is true

1) There is a unique stationary distribution π and

lim
t→∞

pij (t) = πj , ∀i , j ∈ S

(if S is finite, this case necessarily holds)

2) There is no stationary distribution and

lim
t→∞

pij (t) = 0, ∀i , j ∈ S
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Continuous time homogeneous Markov chains Stationary and limiting distributions

Stationary and limiting distribution for a single closed class

Example

Find the equilibrium distribution of the chain.
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Continuous time homogeneous Markov chains Stationary and limiting distributions

Stationary and limiting distribution for a single closed class
Exercise

Vehicles in a certain country are required to be assessed every year for road-worthiness. At one
vehicle assessment centre, drivers wait for an average of 15 minutes before the road-worthiness
assessment of their vehicle commences. The assessment takes on average 20 minutes to complete.
Following the assessment, 80% of vehicles are passed as road-worthy allowing the driver to drive
home. A further 15% of vehicles are categorised as “minor fail”, these vehicles require on average
30 minuutes of repair work before the driver is allowed to drive home. The remaining 5% of vehicles
are categorised as “significant fail”, these vehicles require on average three hours of repair work
before the driver can go home.
A continuous-time Markov model is to be used to model the operation of the vehicle assessment
centre, with states W (waiting for the assessment), A (assessment taking place), M (minor repair
taking place), S (significant repair taking palce) and H (travelling home).

Explain what assumption must be made about the distribution of the time spent in each state

Write down the generator matrix of this process.

Use Kolmogorov’s Forward Equations to:
Write down differential equations satisfied by pWM (t) and by pWA(t)

Verify that pWA(t) = 4e−t/20 − 4e−t/15, for t > 0, where t is measured in minutes.
Derive an expression for pWM (t), for t > 0.

Let Ti be the expected length of time (in minutes) until the vehicle can be driven home
given that the assessment process is currently in state i .

Explain why TW = 15 + TA.
Derive corresponding equations for TA, TM and TS .
Calculate TW .
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