Package ‘actuar’

July 24, 2010

Type Package

Title Actuarial functions

Version 1.1-1

Date 2010-07-20

Author Vincent Goulet, Sébastien Auclair, Christophe Dutang, Xavier Milhaud, Tommy Ouellet, Louis-Philippe Pouliot, Mathieu Pigeon

Maintainer Vincent Goulet vincent.goulet@act.ulaval.ca

URL http://www.actuar-project.org

Description Additional actuarial science functionality, mostly in the fields of loss distributions, risk theory (including ruin theory), simulation of compound hierarchical models and credibility theory, for the moment.

Depends R (>= 2.6.0)

License GPL (>= 2)

Encoding latin1

LazyLoad yes

LazyData yes
ZipData yes
Repository CRAN
Date/Publication 2010-07-24 19:42:53

R topics documented:

adjCoef 3
aggregateDist 6
BetaMoments 10
Burr 11
ChisqSupp 13
cm 14
coverage 19
CTE 21
dental 23
discretize 23
elev 26
emm 27
ExponentialSupp 29
Extract.grouped.data 30
GammaSupp 31
gdental 33
GeneralizedBeta 33
GeneralizedPareto 35
grouped.data 37
hachemeister 38
hist.grouped.data 39
InverseBurr 40
InverseExponential 42
InverseGamma 44
InverseParalogistic 45
InversePareto 47
InverseTransformedGamma 48
InverseWeibull 50
InvGaussSupp 51
Loggamma 53
Loglogistic 54
LognormalMoments 56
mde 57
mean.grouped.data 58
NormalSupp 59
ogive 60
Paralogistic 62
Pareto 64
PhaseType 65
quantile.aggregateDist 67
quantile.grouped.data 68
ruin 69
severity 71
simul 72
simul.summaries 75
SingleParameterPareto 77
TransformedBeta 79
TransformedGamma 81
UniformSupp 83
unroll 84
VaR 85
WeibullMoments 86
Index 87
adjCoef Adjustment Coefficient

Description

Compute the adjustment coefficient in ruin theory, or return a function to compute the adjustment coefficient for various reinsurance retentions.

Usage

```
adjCoef(mgf.claim, mgf.wait = mgfexp(x), premium.rate, upper.bound,
                    h, reinsurance = c("none", "proportional", "excess-of-loss"),
                        from, to, n = 101)
## S3 method for class 'adjCoef':
plot(x, xlab = "x", ylab = "R(x)",
            main = "Adjustment Coefficient", sub = comment(x),
            type = "l", add = FALSE, ...)
```


Arguments

$\operatorname{mgf} . c l a i m \quad$ an expression written as a function of x or of x and y, or alternatively the name of a function, giving the moment generating function (mgf) of the claim severity distribution.
mgf.wait an expression written as a function of x, or alternatively the name of a function, giving the mgf of the claims interarrival time distribution. Defaults to an exponential distribution with parameter 1.
premium.rate if reinsurance $=$ "none", a numeric value of the premium rate; otherwise, an expression written as a function of y, or alternatively the name of a function, giving the premium rate function.
upper.bound numeric; an upper bound for the coefficient, usually the upper bound of the support of the claim severity mgf.
$h \quad$ an expression written as a function of x or of x and y, or alternatively the name of a function, giving function h in the Lundberg equation (see below); ignored if mgf.claim is provided.
reinsurance the type of reinsurance for the portfolio; can be abbreviated.
from, to the range over which the adjustment coefficient will be calculated.

n	integer; the number of values at which to evaluate the adjustment coefficient.
x	an object of class "adjCoef".
xlab, ylab	label of the x and y axes, respectively.
main	main title.
sub	subtitle, defaulting to the type of reinsurance.
type	1-character string giving the type of plot desired; see plot for details.
add	logical; if TRUE add to already existing plot.
\ldots.	further graphical parameters accepted by plot or lines.

Details

In the typical case reinsurance $=$ "none", the coefficient of determination is the smallest (strictly) positive root of the Lundberg equation

$$
h(x)=E\left[e^{x B-x c W}\right]=1
$$

on $[0, m)$, where $m=$ upper.bound, B is the claim severity random variable, W is the claim interarrival (or wait) time random variable and $c=$ premium.rate. The premium rate must satisfy the positive safety loading constraint $E[B-c W]<0$.

With reinsurance = "proportional", the equation becomes

$$
h(x, y)=E\left[e^{x y B-x c(y) W}\right]=1,
$$

where y is the retention rate and $c(y)$ is the premium rate function.
With reinsurance $=$ "excess-of-loss", the equation becomes

$$
h(x, y)=E\left[e^{x \min (B, y)-x c(y) W}\right]=1
$$

where y is the retention limit and $c(y)$ is the premium rate function.
One can use argument h as an alternative way to provide function $h(x)$ or $h(x, y)$. This is necessary in cases where random variables B and W are not independent.

The root of $h(x)=1$ is found by minimizing $(h(x)-1)^{2}$.

Value

If reinsurance $=$ "none", a numeric vector of lenght one. Otherwise, a function of class "adjCoef" inheriting from the "function" class.

Author(s)

Christophe Dutang, Vincent Goulet vincent.goulet@act.ulaval.ca

References

Bowers, N. J. J., Gerber, H. U., Hickman, J., Jones, D. and Nesbitt, C. (1986), Actuarial Mathematics, Society of Actuaries.
Centeno, M. d. L. (2002), Measuring the effects of reinsurance by the adjustment coefficient in the Sparre-Anderson model, Insurance: Mathematics and Economics 30, 37-49.

Gerber, H. U. (1979), An Introduction to Mathematical Risk Theory, Huebner Foundation.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

Examples

```
## Basic example: no reinsurance, exponential claim severity and wait
## times, premium rate computed with expected value principle and
## safety loading of 20%.
adjCoef(mgfexp, premium = 1.2, upper = 1)
## Same thing, giving function h.
h <- function(x) 1/((1 - x) * (1 + 1.2 * x))
adjCoef(h = h, upper = 1)
## Example 11.4 of Klugman et al. (2008)
mgfx <- function(x) 0.6 * exp(x) + 0.4 * exp(2 * x)
adjCoef(mgfx(x), mgfexp(x, 4), prem = 7, upper = 0.3182)
## Proportional reinsurance, same assumptions as above, reinsurer's
## safety loading of 30%.
mgfx <- function(x, y) mgfexp(x * y)
p <- function(x) 1.3 * x - 0.1
h <- function(x, a) 1/((1 - a * x) * (1 + x * p (a)))
R1 <- adjCoef(mgfx, premium = p, upper = 1, reins = "proportional",
            from = 0, to = 1, n = 11)
R2 <- adjCoef(h = h, upper = 1, reins = "p",
    from = 0, to = 1, n = 101)
R1(seq(0, 1, length = 10)) # evaluation for various retention rates
R2(seq(0, 1, length = 10)) # same
plot(R1) # graphical representation
plot(R2, col = "green", add = TRUE) # smoother function
## Excess-of-loss reinsurance
p <- function(x) 1.3 * levgamma(x, 2, 2) - 0.1
mgfx <- function(x, l)
    mgfgamma(x, 2, 2) * pgamma(l, 2, 2 - x) +
    exp(x * l) * pgamma(l, 2, 2, lower = FALSE)
h <- function(x, l) mgfx(x, l) * mgfexp(-x * p(l))
R1 <- adjCoef(mgfx, upper = 1, premium = p, reins = "excess-of-loss",
            from = 0, to = 10, n = 11)
R2 <- adjCoef(h = h, upper = 1, reins = "e",
    from = 0, to = 10, n = 101)
plot(R1)
plot(R2, col = "green", add = TRUE)
```


aggregateDist Aggregate Claim Amount Distribution

Description

Compute the aggregate claim amount cumulative distribution function of a portfolio over a period using one of five methods.

Usage

```
aggregateDist(method = c("recursive", "convolution", "normal",
                            "npower", "simulation"),
    model.freq = NULL, model.sev = NULL, p0 = NULL,
    x.scale = 1, convolve = 0, moments, nb.simul, ...,
    tol = 1e-06, maxit = 500, echo = FALSE)
## S3 method for class 'aggregateDist':
print(x, ...)
## S3 method for class 'aggregateDist':
plot(x, xlim, ylab = expression(F[S](x)),
            main = "Aggregate Claim Amount Distribution",
            sub = comment(x), ...)
## S3 method for class 'aggregateDist':
summary(object, ...)
## S3 method for class 'aggregateDist':
mean(x, ...)
## S3 method for class 'aggregateDist':
diff(x, ...)
```


Arguments

method method to be used
model.freq for "recursive" method: a character string giving the name of a distribution in the $(a, b, 0)$ or $(a, b, 1)$ families of distributions. For "convolution" method: a vector of claim number probabilities. For "simulation" method: a frequency simulation model (see simul for details) or NULL. Ignored with normal and npower methods.
model.sev for "recursive" and "convolution" methods: a vector of claim amount probabilities. For "simulation" method: a severity simulation model (see simul for details) or NULL. Ignored with normal and npower methods.
p0 arbitrary probability at zero for the frequency distribution. Creates a zeromodified or zero-truncated distribution if not NULL. Used only with "recursive" method.

x.scale	value of an amount of 1 in the severity model (monetary unit). Used only with "recursive" and "convolution" methods.
convolve	number of times to convolve the resulting distribution with itself. Used only with "recursive" method.
moments	vector of the true moments of the aggregate claim amount distribution; required only by the "normal" or "npower" methods. number of simulations for the "simulation" method.
nb.simul	parameters of the frequency distribution for the "recursive" method; further arguments to be passed to or from other methods otherwise.
tol	the resulting cumulative distribution in the "recursive" method will get less than tol away from 1.
maxit	maximum number of recursions in the "recursive" method.
echo logical; echo the recursions to screen in the "recursive" method.	
x, object	an object of class "aggregateDist". xlim
ylab	numeric of length 2; the x limits of the plot. label of the y axis.
main	main title. subtitle, defaulting to the calculation method.

Details

aggregateDist returns a function to compute the cumulative distribution function (cdf) of the aggregate claim amount distribution in any point.
The "recursive" method computes the cdf using the Panjer algorithm; the "convolution" method using convolutions; the "normal" method using a normal approximation; the "npower" method using the Normal Power 2 approximation; the "simulation" method using simulations. More details follow.

Value

A function of class "aggregateDist ", inheriting from the "function" class when using normal and Normal Power approximations and additionally inheriting from the "ecdf" and "stepfun" classes when other methods are used.
There are methods available to summarize (summary), represent (print), plot (plot), compute quantiles (quantile) and compute the mean (mean) of "aggregateDist" objects.

For the diff method: a numeric vector of probabilities corresponding to the probability mass function evaluated at the knots of the distribution.

Recursive method

The frequency distribution is a member of the $(a, b, 0)$ family of discrete distributions if p 0 is NULL and a member of the $(a, b, 1)$ family if p 0 is specified.

```
model.freq must be one of "binomial", "geometric", "negative binomial", "poisson"
``` or "logarithmic" (these can abbreviated). The parameters of the frequency distribution must
be specified using names identical to the arguments of functions dbinom, dgeom, dnbinom, dpois and dnbinom, respectively. (The logarithmic distribution is a limiting case of the negative binomial distribution with size parameter equal to 0 .)
model. sev is a vector of the (discretized) claim amount distribution \(X\); the first element must be \(f_{X}(0)=\operatorname{Pr}[X=0]\).
The recursion will fail to start if the expected number of claims is too large. One may divide the appropriate parameter of the frequency distribution by \(2^{n}\) and convolve the resulting distribution \(n=\) convolve times.

Failure to obtain a cumulative distribution function less than tol away from 1 within maxit iterations is often due to a too coarse discretization of the severity distribution.

\section*{Convolution method}

The cumulative distribution function (cdf) \(F_{S}(x)\) of the aggregate claim amount of a portfolio in the collective risk model is
\[
F_{S}(x)=\sum_{n=0}^{\infty} F_{X}^{* n}(x) p_{n}
\]
for \(x=0,1, \ldots ; p_{n}=\operatorname{Pr}[N=n]\) is the frequency probability mass function and \(F_{X}^{* n}(x)\) is the cdf of the \(n\)th convolution of the (discrete) claim amount random variable.
model. freq is vector \(p_{n}\) of the number of claims probabilities; the first element must be \(\operatorname{Pr}[N=\) \(0]\).
model. sev is vector \(f_{X}(x)\) of the (discretized) claim amount distribution; the first element must be \(f_{X}(0)\).

\section*{Normal and Normal Power 2 methods}

The Normal approximation of a cumulative distribution function (cdf) \(F(x)\) with mean \(\mu\) and standard deviation \(\sigma\) is
\[
F(x) \approx \Phi\left(\frac{x-\mu}{\sigma}\right)
\]

The Normal Power 2 approximation of a cumulative distribution function (cdf) \(F(x)\) with mean \(\mu\), standard deviation \(\sigma\) and skewness \(\gamma\) is
\[
F(x) \approx \Phi\left(-\frac{3}{\gamma}+\sqrt{\frac{9}{\gamma^{2}}+1+\frac{6}{\gamma} \frac{x-\mu}{\sigma}}\right)
\]

This formula is valid only for the right-hand tail of the distribution and skewness should not exceed unity.

\section*{Simulation method}

This methods returns the empirical distribution function of a sample of size nb. simul of the aggregate claim amount distribution specified by model.freq and model.sev. simul is used for the simulation of claim amounts, hence both the frequency and severity models can be mixtures of distributions.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Louis-Philippe Pouliot

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

Daykin, C.D., Pentikäinen, T. and Pesonen, M. (1994), Practical Risk Theory for Actuaries, Chapman \& Hall.

\section*{See Also}
discretize to discretize a severity distribution; mean. aggregateDist to compute the mean of the distribution; quantile.aggregateDist to compute the quantiles or the Value-at-Risk; CTE.aggregateDist to compute the Conditional Tail Expectation (or Tail Value-at-Risk); simul.

\section*{Examples}
```


## Convolution method (example 9.5 of Klugman et al. (2008))

fx <- c(0, 0.15, 0.2, 0.25, 0.125, 0.075,
0.05, 0.05, 0.05, 0.025, 0.025)
pn <- c(0.05, 0.1, 0.15, 0.2, 0.25, 0.15, 0.06, 0.03, 0.01)
Fs <- aggregateDist("convolution", model.freq = pn,
model.sev = fx, x.scale = 25)
summary(Fs)
c(Fs(0), diff(Fs(25 * 0:21))) \# probability mass function
plot(Fs)

## Recursive method

Fs <- aggregateDist("recursive", model.freq = "poisson",
model.sev = fx, lambda = 3, x.scale = 25)
plot(Fs)
Fs(knots(Fs)) \# cdf evaluated at its knots
diff(Fs) \# probability mass function

## Recursive method (high frequency)

## Not run: Fs <- aggregateDist("recursive", model.freq = "poisson",

    model.sev = fx, lambda = 1000)
    
## End(Not run)

Fs <- aggregateDist("recursive", model.freq = "poisson",
model.sev = fx, lambda = 250, convolve = 2, maxit = 1500)
plot(Fs)

## Normal Power approximation

Fs <- aggregateDist("npower", moments = c(200, 200, 0.5))
Fs(210)

## Simulation method

model.freq <- expression(data = rpois(3))
model.sev <- expression(data = rgamma(100, 2))
Fs <- aggregateDist("simulation", nb.simul = 1000,

```
```

            model.freq, model.sev)
    mean(Fs)
plot(Fs)

## Evaluation of ruin probabilities using Beekman's formula with

## Exponential(1) claim severity, Poisson(1) frequency and premium rate

## c = 1.2.

fx <- discretize(pexp(x, 1), from = 0, to = 100, method = "lower")
phi0 <- 0.2/1.2
Fs <- aggregateDist(method = "recursive", model.freq = "geometric",
model.sev = fx, prob = phiO)
1 - Fs(400) \# approximate ruin probability
u <- 0:100
plot(u, 1 - Fs(u), type = "l", main = "Ruin probability")

```
BetaMoments

Raw and Limited Moments of the Beta Distribution

\section*{Description}

Raw moments and limited moments for the (central) Beta distribution with parameters shape1 and shape2.

\section*{Usage}
mbeta(order, shape1, shape2)
levbeta(limit, shape1, shape2, order = 1)

\section*{Arguments}
\begin{tabular}{lc}
order & order of the moment. \\
limit & limit of the loss variable. \\
shape1, shape2
\end{tabular}
positive parameters of the Beta distribution.

\section*{Details}

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).
The noncentral Beta distribution is not supported.

\section*{Value}
mbet a gives the \(k\) th raw moment and levbet a gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN , with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{See Also}

Beta for details on the Beta distribution and functions \(\{d, p, q, r\}\) beta.

\section*{Examples}
```

mbeta(2, 3, 4) - mbeta(1, 3, 4)^2
levbeta(10, 3, 4, order = 2)

```

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Burr distribution with parameters shape1, shape2 and scale.

\section*{Usage}
```

dburr(x, shape1, shape2, rate = 1, scale = 1/rate,
log = FALSE)
pburr(q, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qburr(p, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rburr(n, shape1, shape2, rate = 1, scale = 1/rate)
mburr(order, shape1, shape2, rate = 1, scale = 1/rate)
levburr(limit, shape1, shape2, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((n)>1\), the length is taken to be the number required.
shape1, shape2, scale
parameters. Must be strictly positive.
\begin{tabular}{ll}
rate & an alternative way to specify the scale. \\
log, log.p & logical; if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\). \\
lower.tail & logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\). \\
order & order of the moment. \\
limit & limit of the loss variable.
\end{tabular}

\section*{Details}

The Burr distribution with parameters shape \(1=\alpha\), shape \(2=\gamma\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\alpha \gamma(x / \theta)^{\gamma}}{x\left[1+(x / \theta)^{\gamma}\right]^{\alpha+1}}
\]
for \(x>0, \alpha>0, \gamma>0\) and \(\theta>0\).
The Burr is the distribution of the random variable
\[
\theta\left(\frac{X}{1-X}\right)^{1 / \gamma}
\]
where \(X\) has a Beta distribution with parameters 1 and \(\alpha\).
The Burr distribution has the following special cases:
- A Loglogistic distribution when shape1 == 1;
- A Paralogistic distribution when shape2 == shape1;
- A Pareto distribution when shape \(2==1\).

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E[\min (X, d)]\).

\section*{Value}
dburr gives the density, pburr gives the distribution function, qburr gives the quantile function, rburr generates random deviates, mburr gives the \(k\) th raw moment, and levburr gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN, with a warning.

\section*{Note}

Distribution also known as the Burr Type XII or Singh-Maddala distribution.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dburr(2, 3, 4, 5, log = TRUE))
p <- (1:10)/10
pburr(qburr(p, 2, 3, 1), 2, 3, 1)
mburr(2, 1, 2, 3) - mburr(1, 1, 2, 3) ^ 2
levburr(10, 1, 2, 3, order = 2)

```

ChisqSupp Moments and Moment Generating Function of the (non-central) ChiSquared Distribution

\section*{Description}

Raw moments, limited moments and moment generating function for the chi-squared (\(\chi^{2}\)) distribution with \(d f\) degrees of freedom and optional non-centrality parameter ncp.

\section*{Usage}
```

mchisq(order, df, ncp = 0)
levchisq(limit, df, ncp = 0, order = 1)
mgfchisq(x, df, ncp = 0, log= FALSE)

```

\section*{Arguments}
order order of the moment.
limit limit of the loss variable.
\(d f \quad\) degrees of freedom (non-negative, but can be non-integer).
ncp non-centrality parameter (non-negative).
x numeric vector.
\(\log \quad\) logical; if TRUE, the cumulant generating function is returned.

\section*{Details}

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\), the \(k\) th limited moment at some limit \(d\) is \(E[\min (X, d)]\) and the moment generating function is \(E\left[e^{x X}\right]\).
Only integer moments are supported for the non central Chi-square distribution (\(\mathrm{ncp}>0\)).
The limited expected value is supported for the centered Chi-square distribution (\(\mathrm{ncp}=0\)).

\section*{Value}
mchisq gives the \(k\) th raw moment, levchisq gives the \(k\) th moment of the limited loss variable, and mgfchisq gives the moment generating function in x .
Invalid arguments will result in return value NaN , with a warning.

\section*{Author(s)}

Christophe Dutang, Vincent Goulet <vincent.goulet@act.ulaval.ca>

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.
Johnson, N. L. and Kotz, S. (1970), Continuous Univariate Distributions, Volume 1, Wiley.

\section*{See Also}

Chisquare

\section*{Examples}
```

mchisq(2, 3, 4)
levchisq(10, 3, order = 2)
mgfchisq(1, 3, 2)

```
Cm

Credibility Models

\section*{Description}

Fit the following credibility models: Bühlmann, Bühlmann-Straub, hierarchical or regression (Hachemeister).

\section*{Usage}
```

cm(formula, data, ratios, weights, subset,
regformula = NULL, regdata, adj.intercept = FALSE,
method = c("Buhlmann-Gisler", "Ohlsson", "iterative"),
tol = sqrt(.Machine\$double.eps), maxit = 100, echo = FALSE)

## S3 method for class 'cm':

print(x, ...)

## S3 method for class 'cm':

predict(object, levels = NULL, newdata, ...)

## S3 method for class 'cm':

summary(object, levels = NULL, newdata, ...)

## S3 method for class 'summary.cm':

print(x, ...)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline formula & an object of class "formula": a symbolic description of the model to be fit. The details of model specification are given below. \\
\hline data & a matrix or a data frame containing the portfolio structure, the ratios or claim amounts and their associated weights, if any. \\
\hline ratios & expression indicating the columns of dat a containing the ratios or claim amounts. \\
\hline weights & expression indicating the columns of data containing the weights associated with ratios. \\
\hline subset & an optional logical expression indicating a subset of observations to be used in the modeling process. All observations are included by default. \\
\hline regformula & an object of class "formula": symbolic description of the regression component (see lm for details). No left hand side is needed in the formula; if present it is ignored. If NULL, no regression is done on the data. \\
\hline regdata & an optional data frame, list or environment (or object coercible by as. data. frame to a data frame) containing the variables in the regression model. \\
\hline \multicolumn{2}{|l|}{adj.intercept} \\
\hline & if TRUE, the intercept of the regression model is located at the barycenter of the regressor instead of the origin. \\
\hline method & estimation method for the variance components of the model; see details below. \\
\hline tol & tolerance level for the stopping criteria for iterative estimation method. \\
\hline maxit & maximum number of iterations in iterative estimation method. \\
\hline echo & logical; whether to echo the iterative procedure or not \\
\hline x, object & an object of class " cm" \\
\hline levels & character vector indicating the levels to predict or to include in the summary; if NULL all levels are included. \\
\hline newdata & data frame containing the variables used to predict credibility regression models. \\
\hline & additional attributes to attach to the result for the predict and summary methods; further arguments to format for the print. summary method; unused for the print method. \\
\hline
\end{tabular}

\section*{Details}
cm is the unified front end for credibility models fitting. Currently, the function supports hierarchical models with any number of levels (with Bühlmann and Bühlmann-Straub models as special cases) and the regression model of Hachemeister. Usage of cm is similar to 1 m .
The formula argument symbolically describes the structure of the portfolio in the form terms. Each term is an interaction between risk factors contributing to the total variance of the portfolio data. Terms are separated by + operators and interactions within each term by :. For a portfolio divided first into sectors, then units and finally contracts, formula would be ~ sector + sector:unit + sector:unit:contract, where sector, unit and contract are column names in data. In general, the formula should be of the form \(\sim a+a: b+a: b: c+\) a:b:c:d +

If argument regformula is not NULL, the regression model of Hachemeister is fit to the data. The response is usually time. By default, the intercept of the model is located at time origin. If argument adj. intercept is TRUE, the intercept is moved to the (collective) barycenter of time, by orthogonalization of the design matrix. Note that the regression coefficients may be difficult to interpret in this case.
Arguments ratios, weights and subset are used like arguments select, select and subset, respectively, of function subset.

Data does not have to be sorted by level. Nodes with no data (complete lines of NA except for the portfolio structure) are allowed, with the restriction mentioned above.

\section*{Value}

Function cm computes the structure parameters estimators of the model specified in formula. The value returned is an object of class cm .

An object of class " cm " is a list with at least the following components:
```

means a list containing, for each level, the vector of linearly sufficient statistics.
weights a list containing, for each level, the vector of total weights.
unbiased a vector containing the unbiased variance components estimators, or NULL.
iterative a vector containing the iterative variance components estimators, or NULL.
cred for multi-level hierarchical models: a list containing, the vector of credibility
factors for each level. For one-level models: an array or vector of credibility
factors.
nodes a list containing, for each level, the vector of the number of nodes in the level.
classification
the columns of data containing the portfolio classification structure.
ordering a list containing, for each level, the affiliation of a node to the node of the level above.

```

Regression fits have in addition the following components:
adj.models a list containing, for each node, the credibility adjusted regression model as obtained with lm.fit or lm.wfit.
transition if adj.intercept is TRUE, a transition matrix from the basis of the orthogonal design matrix to the basis of the original design matrix.
terms the terms object used.
The method of predict for objects of class "cm" computes the credibility premiums for the nodes of every level included in argument levels (all by default). Result is a list the same length as levels or the number of levels in formula, or an atomic vector for one-level models.

\section*{Hierarchical models}

The credibility premium at one level is a convex combination between the linearly sufficient statistic of a node and the credibility premium of the level above. (For the first level, the complement of credibility is given to the collective premium.) The linearly sufficient statistic of a node is the
credibility weighted average of the data of the node, except at the last level, where natural weights are used. The credibility factor of node \(i\) is equal to
\[
\frac{w_{i}}{w_{i}+a / b},
\]
where \(w_{i}\) is the weight of the node used in the linearly sufficient statistic, \(a\) is the average within node variance and \(b\) is the average between node variance.

\section*{Regression models}

The credibility premium of node \(i\) is equal to
\[
y^{\prime} b_{i}^{a}
\]
where \(y\) is a matrix created from newdata and \(b_{i}^{a}\) is the vector of credibility adjusted regression coefficients of node \(i\). The latter is given by
\[
b_{i}^{a}=Z_{i} b_{i}+\left(I-Z_{I}\right) m
\]
where \(b_{i}\) is the vector of regression coefficients based on data of node \(i\) only, \(m\) is the vector of collective regression coefficients, \(Z_{i}\) is the credibility matrix and \(I\) is the identity matrix. The credibility matrix of node \(i\) is equal to
\[
A^{-1}\left(A+s^{2} S_{i}\right)
\]
where \(S_{i}\) is the unscaled regression covariance matrix of the node, \(s^{2}\) is the average within node variance and \(A\) is the within node covariance matrix.

If the intercept is positioned at the barycenter of time, matrices \(S_{i}\) and \(A\) (and hence \(Z_{i}\)) are diagonal. This amounts to use Bühlmann-Straub models for each regression coefficient.
Argument newdat a provides the "future" value of the regressors for prediction purposes. It should be given as specified in predict. 1 m .

\section*{Variance components estimation}

For hierarchical models, two sets of estimators of the variance components (other than the within node variance) are available: unbiased estimators and iterative estimators.
Unbiased estimators are based on sums of squares of the form
\[
B_{i}=\sum_{j} w_{i j}\left(X_{i j}-\bar{X}_{i}\right)^{2}-(J-1) a
\]
and constants of the form
\[
c_{i}=w_{i}-\sum_{j} \frac{w_{i j}^{2}}{w_{i}}
\]
where \(X_{i j}\) is the linearly sufficient statistic of level \((i j) ; \bar{X}_{i}\) is the weighted average of the latter using weights \(w_{i j} ; w_{i}=\sum_{j} w_{i j} ; J\) is the effective number of nodes at level \((i j) ; a\) is the within variance of this level. Weights \(w_{i j}\) are the natural weights at the lowest level, the sum of the natural weights the next level and the sum of the credibility factors for all upper levels.

The Bühlmann-Gisler estimators (method = "Buhlmann-Gisler") are given by
\[
b=\frac{1}{I} \sum_{i} \max \left(\frac{B_{i}}{c_{i}}, 0\right),
\]
that is the average of the per node variance estimators truncated at 0 .
The Ohlsson estimators (method \(=\) "Ohlsson") are given by
\[
b=\frac{\sum_{i} B_{i}}{\sum_{i} c_{i}}
\]
that is the weighted average of the per node variance estimators without any truncation. Note that negative estimates will be truncated to zero for credibility factor calculations.

In the Bühlmann-Straub model, these estimators are equivalent.
Iterative estimators method \(=\) "iterative" are pseudo-estimators of the form
\[
b=\frac{1}{d} \sum_{i} w_{i}\left(X_{i}-\bar{X}\right)^{2}
\]
where \(X_{i}\) is the linearly sufficient statistic of one level, \(\bar{X}\) is the linearly sufficient statistic of the level above and \(d\) is the effective number of nodes at one level minus the effective number of nodes of the level above. The Ohlsson estimators are used as starting values.

For regression models, with the intercept at time origin, only iterative estimators are available. If method is different from "iterative", a warning is issued. With the intercept at the barycenter of time, the choice of estimators is the same as in the Bühlmann-Straub model.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Xavier Milhaud, Tommy Ouellet, LouisPhilippe Pouliot

\section*{References}

Bühlmann, H. and Gisler, A. (2005), A Course in Credibility Theory and its Applications, Springer.
Belhadj, H., Goulet, V. and Ouellet, T. (2009), On parameter estimation in hierarchical credibility, Astin Bulletin 39.

Goulet, V. (1998), Principles and application of credibility theory, Journal of Actuarial Practice 6, ISSN 1064-6647.

Goovaerts, M. J. and Hoogstad, W. J. (1987), Credibility Theory, Surveys of Actuarial Studies, No. 4, Nationale-Nederlanden N.V.

\section*{See Also}
subset, formula, lm, predict.lm.

\section*{Examples}
```

data(hachemeister)

## Buhlmann-Straub model

fit <- cm(~state, hachemeister,
ratios = ratio.1:ratio.12, weights = weight.1:weight.12)
fit \# print method
predict(fit) \# credibility premiums
summary(fit) \# more details

## Two-level hierarchical model. Notice that data does not have

## to be sorted by level

X <- data.frame(unit = c("A", "B", "A", "B", "B"), hachemeister)
fit <- cm(~unit + unit:state, X, ratio.1:ratio.12, weight.1:weight.12)
predict(fit)
predict(fit, levels = "unit") \# unit credibility premiums only
summary(fit)
summary(fit, levels = "unit") \# unit summaries only

## Regression model with intercept at time origin

fit <- cm(~state, hachemeister,
regformula = ~time, regdata = data.frame(time = 12:1),
ratios = ratio.1:ratio.12, weights = weight.1:weight.12)
fit
predict(fit, newdata = data.frame(time = 0))
summary(fit, newdata = data.frame(time = 0))

## Same regression model, with intercept at barycenter of time

fit <- cm(~state, hachemeister, adj.intercept = TRUE,
regformula = ~time, regdata = data.frame(time = 12:1),
ratios = ratio.1:ratio.12, weights = weight.1:weight.12)
fit
predict(fit, newdata = data.frame(time = 0))
summary(fit, newdata = data.frame(time = 0))

```
```

coverage

```

Density and Cumulative Distribution Function for Modified Data

\section*{Description}

Compute probability density function or cumulative distribution function of the payment per payment or payment per loss random variable under any combination of the following coverage modifications: deductible, limit, coinsurance, inflation.

\section*{Usage}
```

coverage(pdf, cdf, deductible = 0, franchise = FALSE,
limit = Inf, coinsurance = 1, inflation = 0,
per.loss = FALSE)

```

\section*{Arguments}
\begin{tabular}{ll}
pdf, cdf & \begin{tabular}{l}
function object or character string naming a function to compute, respectively, \\
the probability density function and cumulative distribution function of a prob- \\
ability law.
\end{tabular} \\
deductible & \begin{tabular}{l}
a unique positive numeric value. \\
logical; TRUE for a franchise deductible, FALSE (default) for an ordinary de- \\
ductible.
\end{tabular} \\
limit & \begin{tabular}{l}
a unique positive numeric value larger than deductible.
\end{tabular} \\
coinsurance & a unique value between 0 and 1; the proportion of coinsurance. \\
inflation & \begin{tabular}{l}
a unique value between 0 and \(1 ;\) the rate of inflation. \\
per.loss
\end{tabular} \\
\(l\)
\end{tabular}

\section*{Details}
coverage returns a function to compute the probability density function (pdf) or the cumulative distribution function (cdf) of the distribution of losses under coverage modifications. The pdf and cdf of unmodified losses are pdf and cdf, respectively.
If pdf is specified, the pdf is returned; if pdf is missing or NULL, the cdf is returned. Note that cdf is needed if there is a deductible or a limit.

\section*{Value}

An object of mode "function" with the same arguments as pdf or cdf, except "lower.tail", "log.p" and "log", which are not supported.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{See Also}
vignette("coverage") for the exact definitions of the per payment and per loss random variables under an ordinary or franchise deductible.

\section*{Examples}
```


## Default case: pdf of the per payment random variable with

## an ordinary deductible

coverage(dgamma, pgamma, deductible = 1)

## Add a limit

f <- coverage(dgamma, pgamma, deductible = 1, limit = 7)

```
```

f <- coverage("dgamma", "pgamma", deductible = 1, limit = 7) \# same
f(0, shape = 3, rate = 1)
f(2, shape = 3, rate = 1)
f(6, shape = 3, rate = 1)
f(8, shape = 3, rate = 1)
curve(dgamma(x, 3, 1), xlim =c(0, 10), ylim =c(0, 0.3)) \# original
curve(f(x, 3, 1), xlim = c(0.01, 5.99), col = 4, add = TRUE) \# modified
points(6, f(6, 3, 1), pch = 21, bg = 4)

## Cumulative distribution function

F <- coverage(cdf = pgamma, deductible = 1, limit = 7)
F(0, shape = 3, rate = 1)
F(2, shape = 3, rate = 1)
F(6, shape = 3, rate = 1)
F(8, shape = 3, rate = 1)
curve(pgamma(x, 3, 1), xlim = c(0, 10), ylim = c(0, 1)) \# original
curve(F(x, 3, 1), xlim = c(0, 5.99), col = 4, add = TRUE) \# modified
curve(F(x, 3, 1), xlim = c(6, 10), col = 4, add = TRUE) \# modified

## With no deductible, all distributions below are identical

coverage(dweibull, pweibull, limit = 5)
coverage(dweibull, pweibull, per.loss = TRUE, limit = 5)
coverage(dweibull, pweibull, franchise = TRUE, limit = 5)
coverage(dweibull, pweibull, per.loss = TRUE, franchise = TRUE,
limit = 5)

## Coinsurance alone; only case that does not require the cdf

coverage(dgamma, coinsurance = 0.8)

```

\section*{Description}

Conditional Tail Expectation, also called Tail Value-at-Risk.
TVaR is an alias for CTE.

\section*{Usage}

CTE (\(\mathrm{x}, \ldots\))
\#\# S3 method for class 'aggregateDist': CTE (x, conf.level = c(0.9, 0.95, 0.99), names = TRUE, ...)
\(\operatorname{TVaR}(x, \ldots)\)

\section*{Arguments}

X
conf.level
names
an \(R\) object.
numeric vector of probabilities with values in \([0,1)\).
logical; if true, the result has a names attribute. Set to FALSE for speedup with many probs.
further arguments passed to or from other methods.

\section*{Details}

The Conditional Tail Expectation (or Tail Value-at-Risk) measures the average of losses above the Value at Risk for some given confidence level, that is \(E[X \mid X>\operatorname{VaR}(X)]\) where \(X\) is the loss random variable.

CTE is a generic function with, currently, only a method for objects of class "aggregateDist". For the recursive, convolution and simulation methods of aggregateDist, the CTE is computed from the definition using the empirical cdf.
For the normal approximation method, an explicit formula exists:
\[
\mu+\frac{\sigma}{(1-\alpha)} \sqrt{2 \pi} e^{-\operatorname{VaR}(\mathrm{X})^{2} / 2}
\]
where \(\mu\) is the mean, \(\sigma\) the standard deviation and \(\alpha\) the confidence level.
For the Normal Power approximation, the CTE is computed from the definition using integrate.

\section*{Value}

A numeric vector, named if names is TRUE.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Tommy Ouellet

\section*{See Also}
```

aggregateDist; VaR

```

\section*{Examples}
```

model.freq <- expression(data = rpois(7))
model.sev <- expression(data = rnorm(9, 2))
Fs <- aggregateDist("simulation", model.freq, model.sev, nb.simul = 1000)
CTE(Fs)

```
```

dental Individual Dental Claims Data Set

```

\section*{Description}

Basic dental claims on a policy with a deductible of 50 .

\section*{Usage}
dental

\section*{Format}

A vector containing 10 observations

\section*{Source}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{Description}

Compute a discrete probability mass function from a continuous cumulative distribution function (cdf) with various methods.
discretise is an alias for discretize.

\section*{Usage}
```

discretize(cdf, from, to, step = 1,
method = c("upper", "lower", "rounding", "unbiased"),
lev, by = step, xlim = NULL)
discretise(cdf, from, to, step = 1,
method = c("upper", "lower", "rounding", "unbiased"),
lev, by = step, xlim = NULL)

```

\section*{Arguments}
\(c d f\)
from, to
step
method
lev
by
xlim
an expression written as a function of \(x\), or alternatively the name of a function, giving the cdf to discretize.
the range over which the function will be discretized. numeric; the discretization step (or span, or lag). discretization method to use.
an expression written as a function of \(x\), or alternatively the name of a function, to compute the limited expected value of the distribution corresponding to cdf . Used only with the "unbiased" method. an alias for step.
numeric of length 2 ; if specified, it serves as default for c (from, to).

\section*{Details}

Usage is similar to curve.
discretize returns the probability mass function (pmf) of the random variable obtained by discretization of the cdf specified in cdf.
Let \(F(x)\) denote the cdf, \(E[\min (X, x)]\) the limited expected value at \(x, h\) the step, \(p_{x}\) the probability mass at \(x\) in the discretized distribution and set \(a=\) from and \(b=\) 七o.
Method "upper" is the forward difference of the cdf \(F\) :
\[
p_{x}=F(x+h)-F(x)
\]
for \(x=a, a+h, \ldots, b-\) step.
Method "lower" is the backward difference of the cdf \(F\) :
\[
p_{x}=F(x)-F(x-h)
\]
for \(x=a+h, \ldots, b\) and \(p_{a}=F(a)\).
Method "rounding" has the true cdf pass through the midpoints of the intervals \([x-h / 2, x+\) \(h / 2)\) :
\[
p_{x}=F(x+h / 2)-F(x-h / 2)
\]
for \(x=a+h, \ldots, b-\) step and \(p_{a}=F(a+h / 2)\). The function assumes the cdf is continuous. Any adjusment necessary for discrete distributions can be done via cdf.
Method "unbiased" matches the first moment of the discretized and the true distributions. The probabilities are as follows:
\[
\begin{gathered}
p_{a}=\frac{E[\min (X, a)]-E[\min (X, a+h)]}{h}+1-F(a) \\
p_{x}=\frac{2 E[\min (X, x)]-E[\min (X, x-h)]-E[\min (X, x+h)]}{h}, \quad a<x<b \\
p_{b}=\frac{E[\min (X, b)]-E[\min (X, b-h)]}{h}-1+F(b),
\end{gathered}
\]

\section*{Value}

A numeric vector of probabilities suitable for use in aggregateDist.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{See Also}
```

aggregateDist

```

\section*{Examples}
```

x <- seq(0, 5, 0.5)
op <- par(mfrow = c(1, 1), col = "black")

## Upper and lower discretization

fu <- discretize(pgamma(x, 1), method = "upper",
from = 0, to = 5, step = 0.5)
fl <- discretize(pgamma(x, 1), method = "lower",
from = 0, to = 5, step = 0.5)
curve(pgamma(x, 1), xlim = c(0, 5))
par(col = "blue")
plot(stepfun(head(x, -1), diffinv(fu)), pch = 19, add = TRUE)
par(col = "green")
plot(stepfun(x, diffinv(fl)), pch = 19, add = TRUE)
par(col = "black")

## Rounding (or midpoint) discretization

fr <- discretize(pgamma(x, 1), method = "rounding",
from = 0, to = 5, step = 0.5)
curve(pgamma(x, 1), xlim = c(0, 5))
par(col = "blue")
plot(stepfun(head(x, -1), diffinv(fr)), pch = 19, add = TRUE)
par(col = "black")

## First moment matching

fb <- discretize(pgamma(x, 1), method = "unbiased",
lev = levgamma(x, 1), from = 0, to = 5, step = 0.5)
curve(pgamma(x, 1), xlim = c(0, 5))
par(col = "blue")
plot(stepfun(x, diffinv(fb)), pch = 19, add = TRUE)
par(op)

```
```

elev Empirical Limited Expected Value

```

\section*{Description}

Compute the empirical limited expected value for individual or grouped data.

\section*{Usage}
```

elev(x, ...)

## Default S3 method:

elev(x, ...)

## S3 method for class 'grouped.data':

elev(x, ...)

## S3 method for class 'elev':

print(x, digits = getOption("digits") - 2, ...)

## S3 method for class 'elev':

summary(object, ...)

## S3 method for class 'elev':

knots(Fn, ...)

## S3 method for class 'elev':

plot(x, ..., main = NULL, xlab = "x", ylab = "Empirical LEV")

```

\section*{Arguments}
x
a vector or an object of class "grouped. data" (in which case only the first column of frequencies is used); for the methods, an object of class "elev", typically.
digits number of significant digits to use, see print.
Fn, object an Robject inheriting from "ogive".
main main title.
xlab, ylab labels of \(x\) and \(y\) axis.
... arguments to be passed to subsequent methods.

\section*{Details}

The limited expected value (LEV) at \(u\) of a random variable \(X\) is \(E[X \wedge u]=E[\min (X, u)]\). For individual data \(x_{1}, \ldots, x_{n}\), the empirical LEV \(E_{n}[X \wedge u]\) is thus
\[
E_{n}[X \wedge u]=\frac{1}{n}\left(\sum_{x_{j}<u} x_{j}+\sum_{x_{j} \geq u} u\right)
\]

Methods of elev exist for individual data or for grouped data created with grouped. data. The formula in this case is too long to show here. See the reference for details.

\section*{Value}

For elev, a function of class "elev", inheriting from the "function" class.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{See Also}
grouped. data to create grouped data objects; stepfun for related documentation (even though the empirical LEV is not a step function).

\section*{Examples}
```

data(gdental)
lev <- elev(gdental)
lev
summary(lev)
knots(lev) \# the group boundaries
lev(knots(lev)) \# empirical lev at boundaries
lev(c(80, 200, 2000)) \# and at other limits
plot(lev, type = "○", pch = 16)

```
emm Empirical Moments

\section*{Description}

Raw empirical moments for individual and grouped data.

\section*{Usage}
```

emm(x, order = 1, ...)

## Default S3 method:

emm(x, order = 1, ...)

## S3 method for class 'grouped.data':

emm(x, order = 1, ...)

```

\section*{Arguments}

X
a vector or matrix of individual data, or an object of class "grouped data".
order order of the moment. Must be positive.
. . . further arguments passed to or from other methods.

\section*{Details}

Arguments . . . are passed to colMeans; na.rm = TRUE may be useful for individual data with missing values.
For individual data, the \(k\) th empirical moment is \(\sum_{j=1}^{n} x_{j}^{k}\).
For grouped data with group boundaries \(c_{1}, \ldots, c_{r}\) and group frequencies \(n_{1}, \ldots, n_{r}\), the \(k\) th empirical moment is
\[
\sum_{j=1}^{r} \frac{n_{j}\left(c_{j}^{k}-c_{j-1}^{k}\right)}{n(k+1)\left(c_{j}-c_{j-1}\right)}
\]
where \(n=\sum_{j=1}^{r} n_{j}\).

\section*{Value}

A named vector or matrix of moments.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{See Also}
mean and mean. grouped. dat a for simpler access to the first moment.

\section*{Examples}
```


## Individual data

data(dental)
emm(dental, order = 1:3)

## Grouped data

data(gdental)
emm(gdental)
x <- grouped.data(cj = gdental[, 1],
nj1 = sample(1:100, nrow(gdental)),
nj2 = sample(1:100, nrow(gdental)))
emm(x) \# same as mean(x)

```

\section*{Description}

Raw moments, limited moments and moment generating function for the exponential distribution with rate rate (i.e., mean \(1 /\) rate).

\section*{Usage}
```

mexp(order, rate = 1)
levexp(limit, rate = 1, order = 1)
mgfexp(x, rate = 1, log = FALSE)

```

\section*{Arguments}
order order of the moment.
limit limit of the loss variable.
rate vector of rates.
\(\mathrm{x} \quad\) numeric vector.
\(\log \quad\) logical; if TRUE, the cumulant generating function is returned.

\section*{Details}

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\), the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\) and the moment generating function is \(E\left[e^{x X}\right]\).

\section*{Value}
mexp gives the \(k\) th raw moment, levexp gives the \(k\) th moment of the limited loss variable, and \(m g f e x p\) gives the moment generating function in \(x\).
Invalid arguments will result in return value NaN , with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Christophe Dutang and Mathieu Pigeon.

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.
Johnson, N. L. and Kotz, S. (1970), Continuous Univariate Distributions, Volume 1, Wiley.

\section*{See Also}

Exponential

\section*{Examples}
```

mexp (2, 3) - mexp (1, 3)^2
levexp(10, 3, order = 2)
mgfexp (1,2)

```
Extract.grouped.data
Extract or Replace Parts of a Grouped Data Object

\section*{Description}

Extract or replace subsets of grouped data objects.

\section*{Usage}
```


## S3 method for class 'grouped.data':

x[i, j]

## S3 replacement method for class 'grouped.data':

x[i, j] <- value

```

\section*{Arguments}
\begin{tabular}{ll}
x & an object of class grouped. data. \\
i, j & \begin{tabular}{l}
elements to extract or replace. i, j are numeric or character or, for [\\
only, empty. Numeric values are coerced to integer as if by as. integer. For \\
replacement by [, a logical matrix is allowed, but not replacement in the group \\
boundaries and group frequencies simultaneously.
\end{tabular} \\
value & \begin{tabular}{l}
a suitable replacement value.
\end{tabular}
\end{tabular}

\section*{Details}

Objects of class "grouped.data" can mostly be indexed like data frames, with the following restrictions:
1. For [, the extracted object must keep a group boundaries column and at least one group frequencies column to remain of class "grouped. data";
2. For [<-, it is not possible to replace group boundaries and group frequencies simultaneously;
3. When replacing group boundaries, length (value) \(==\) length (i) +1 .
\(\mathrm{x}\left[\begin{array}{ll}, & 1\end{array}\right]\) will return the plain vector of group boundaries.
Replacement of non adjacent group boundaries is not possible for obvious reasons.
Otherwise, extraction and replacement should work just like for data frames.

\section*{Value}

For [an object of class "grouped. data", a data frame or a vector.
For [<- an object of class "grouped. data".

\section*{Note}

Currently [[, [[<-, \$ and \$<- are not specifically supported, but should work as usual on group frequency columns.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>

\section*{See Also}
[.data.frame for extraction and replacement methods of data frames, grouped.data to create grouped data objects.

\section*{Examples}
```

data(gdental)
(x <- gdental[1]) \# select column 1
class(x) \# no longer a grouped.data object
class(gdental[2]) \# same
gdental[, 1] \# group boundaries
gdental[, 2] \# group frequencies
gdental[1:4,] \# a subset
gdental[c(1, 3, 5),] \# avoid this
gdental[1:2, 1] <- c(0, 30, 60) \# modified boundaries
gdental[, 2] <- 10 \# modified frequencies

## Not run: gdental[1, ] <- 2 \# not allowed

```
GammaSupp Moments and Moment Generating Function of the Gamma Distribu- tion

\section*{Description}

Raw moments, limited moments and moment generating function for the Gamma distribution with parameters shape and scale.

\section*{Usage}
```

mgamma(order, shape, rate = 1, scale = 1/rate)
levgamma(limit, shape, rate = 1, scale = 1/rate, order = 1)
mgfgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)

```

\section*{Arguments}
order order of the moment.
limit limit of the loss variable.
rate an alternative way to specify the scale.
shape, scale shape and scale parameters. Must be strictly positive.
\(\mathrm{x} \quad\) numeric vector.
\(\log \quad\) logical; if TRUE, the cumulant generating function is returned.

\section*{Details}

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\), the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\) and the moment generating function is \(E\left[e^{x X}\right]\).

\section*{Value}
mgamma gives the \(k\) th raw moment, levgamma gives the \(k\) th moment of the limited loss variable, and \(m g f g a m m a\) gives the moment generating function in x .

Invalid arguments will result in return value NaN , with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Christophe Dutang and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

Johnson, N. L. and Kotz, S. (1970), Continuous Univariate Distributions, Volume 1, Wiley.

\section*{See Also}

GammaDist

\section*{Examples}
```

mgamma (2, 3, 4) - mgamma (1, 3, 4)^2
levgamma(10, 3, 4, order = 2)
mgfgamma (1, 3, 2)

```
```

gdental Grouped Dental Claims Data Set

```

\section*{Description}

Grouped dental claims, that is presented in a number of claims per claim amount group form.

\section*{Usage}
gdental

\section*{Format}

An object of class "grouped. data" (inheriting from class "data.frame") consisting of 10 rows and 2 columns. The environment of the object contains the plain vector of cj of group boundaries

\section*{Source}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{See Also}
grouped. data for a description of grouped data objects.

\section*{GeneralizedBeta The Generalized Beta Distribution}

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Generalized Beta distribution with parameters shape1, shape2, shape 3 and scale.

\section*{Usage}
```

dgenbeta(x, shape1, shape2, shape3, rate = 1, scale = 1/rate,
log = FALSE)
pgenbeta(q, shape1, shape2, shape3, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qgenbeta(p, shape1, shape2, shape3, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rgenbeta(n, shape1, shape2, shape3, rate = 1, scale = 1/rate)
mgenbeta(order, shape1, shape2, shape3, rate = 1, scale = 1/rate)
levgenbeta(limit, shape1, shape2, shape3, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
n number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required.
shape1, shape2, shape3, scale
parameters. Must be strictly positive.
rate an alternative way to specify the scale.
\(\log , \log . \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Generalized Beta distribution with parameters shape \(1=\alpha\), shape \(2=\beta\), shape \(3=\tau\) and scale \(=\theta\), has density:
\[
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)}(x / \theta)^{\alpha \tau}\left(1-(x / \theta)^{\tau}\right)^{\beta-1} \frac{\tau}{x}
\]
for \(0<x<\theta, \alpha>0, \beta>0, \tau>0\) and \(\theta>0\). (Here \(\Gamma(\alpha)\) is the function implemented by R's gamma () and defined in its help.)
The Generalized Beta is the distribution of the random variable
\[
\theta X^{1 / \tau}
\]
where \(X\) has a Beta distribution with parameters \(\alpha\) and \(\beta\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E[\min (X, d)]\).

\section*{Value}
dgenbeta gives the density, pgenbeta gives the distribution function, qgenbeta gives the quantile function, rgenbeta generates random deviates, mgenbeta gives the \(k\) th raw moment, and levgenbeta gives the \(k\) th moment of the limited loss variable.

Invalid arguments will result in return value NaN , with a warning.

\section*{Note}

This is not the generalized three-parameter beta distribution defined on page 251 of Johnson et al, 1995.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.
Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, Volume 2, Wiley.

\section*{Examples}
```

exp(dgenbeta(2, 2, 3, 4, 0.2, log = TRUE))
p <- (1:10)/10
pgenbeta(qgenbeta(p, 2, 3, 4, 0.2), 2, 3, 4, 0.2)
mgenbeta(2, 1, 2, 3, 0.25) - mgenbeta(1, 1, 2, 3, 0.25) ^ 2
levgenbeta(10, 1, 2, 3, 0.25, order = 2)

```
```

GeneralizedPareto The Generalized Pareto Distribution

```

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Generalized Pareto distribution with parameters shape1, shape 2 and scale.

\section*{Usage}
```

dgenpareto(x, shape1, shape2, rate = 1, scale = 1/rate,
log = FALSE)
pgenpareto(q, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qgenpareto(p, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rgenpareto(n, shape1, shape2, rate = 1, scale = 1/rate)
mgenpareto(order, shape1, shape2, rate = 1, scale = 1/rate)
levgenpareto(limit, shape1, shape2, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
n number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required.
shape1, shape2, scale
parameters. Must be strictly positive.
rate an alternative way to specify the scale.
\(\log , \log . \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Generalized Pareto distribution with parameters shape \(1=\alpha\), shape \(2=\tau\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\Gamma(\alpha+\tau)}{\Gamma(\alpha) \Gamma(\tau)} \frac{\theta^{\alpha} x^{\tau-1}}{(x+\theta)^{\alpha+\tau}}
\]
for \(x>0, \alpha>0, \tau>0\) and \(\theta>0\). (Here \(\Gamma(\alpha)\) is the function implemented by R's gamma () and defined in its help.)
The Generalized Pareto is the distribution of the random variable
\[
\theta\left(\frac{X}{1-X}\right)
\]
where \(X\) has a Beta distribution with parameters \(\alpha\) and \(\tau\).
The Generalized Pareto distribution has the following special cases:
- A Pareto distribution when shape2 == 1;
- An Inverse Pareto distribution when shape \(1==1\).

\section*{Value}
dgenpareto gives the density, pgenpareto gives the distribution function, qgenpareto gives the quantile function, rgenpareto generates random deviates, mgenpareto gives the \(k\) th raw moment, and levgenpareto gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN, with a warning.

\section*{Note}

Distribution also known as the Beta of the Second Kind.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dgenpareto(3, 3, 4, 4, log = TRUE))
p <- (1:10)/10
pgenpareto(qgenpareto(p, 3, 3, 1), 3, 3, 1)
qgenpareto(.3, 3, 4, 4, lower.tail = FALSE)
mgenpareto(1, 3, 2, 1) ^ 2
levgenpareto(10, 3, 3, 3, order = 2)

```
grouped.data Grouped data

\section*{Description}

Creation of grouped data objects, allowing for consistent representation and manipulation of data presented in a frequency per group form.

\section*{Usage}
```

grouped.data(..., right = TRUE, row.names = NULL, check.rows = FALSE,
check.names = TRUE)

```

\section*{Arguments}
```

    ... these arguments are either of the form value or tag = value. See Details.
    right logical, indicating if the intervals should be closed on the right (and open on the
        left) or vice versa.
    row.names, check.rows, check.names
                        arguments identical to those of data.frame.
    ```

\section*{Details}

A grouped data object is a special form of data frame consisting of:
1. one column of contiguous group boundaries;
2. one or more columns of frequencies within each group.

The first argument will be taken as the vector of group boundaries. This vector must be exactly one element longer than the other arguments, which will be taken as vectors of group frequencies. All arguments are coerced to data frames.
Missing (NA) frequencies are replaced by zeros, with a warning.
Extraction and replacement methods exist for grouped. data objects, but working on non adjacent groups will most likely yield useless results.

\section*{Value}

An object of class c("grouped.data", "data.frame") with an environment containing the vector \(\mathrm{c} j\) of group boundaries.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Mathieu Pigeon and Louis-Philippe Pouliot

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{See Also}
[.grouped.data for extraction and replacement methods, data.frame for usual data frame creation and manipulation.

\section*{Examples}
```


## Most common usage

cj <- c(0, 25, 50, 100, 250, 500, 1000)
nj <- c(30, 31, 57, 42, 45, 10)
(x <- grouped.data(Group = cj, Frequency = nj))
class(x)
x[, 1] \# group boundaries
x[, 2] \# group frequencies

## Multiple frequency columns are supported

x <- sample(1:100, 9)
y<- sample(1:100, 9)
grouped.data(cj = 1:10, nj.1 = x, nj. 2 = y)

```
hachemeister Hachemeister Data Set

\section*{Description}

Hachemeister (1975) data set giving average claim amounts in private passenger bodily injury insurance in five U.S. states over 12 quarters between July 1970 and June 1973 and the corresponding number of claims.

\section*{Usage}
hachemeister

\section*{Format}

A matrix with 5 rows and the following 25 columns:
state the state number;
ratio. \(1, \ldots\), ratio. 12 the average claim amounts;
weight. \(1, \ldots\), weight .12 the corresponding number of claims.

\section*{Source}

Hachemeister, C. A. (1975), Credibility for regression models with application to trend, Proceedings of the Berkeley Actuarial Research Conference on Credibility, Academic Press.
hist.grouped.data Histogram for Grouped Data

\section*{Description}

This method for the generic function hist is mainly useful to plot the histogram of grouped data. If plot = FALSE, the resulting object of class "histogram" is returned for compatibility with hist. default, but does not contain much information not already in x .

\section*{Usage}
```


## S3 method for class 'grouped.data':

```
hist (x, freq \(=\) NULL, probability \(=\) !freq,
 density \(=\) NULL, angle \(=45\), col \(=\) NULL, border \(=\) NULL,
 main = paste("Histogram of" , xname),
 \(x \lim =\) range (cj), ylim \(=\) NULL, \(x l a b=x n a m e, ~ y l a b\),
 axes = TRUE, plot = TRUE, labels = FALSE, ...)

\section*{Arguments}
x an object of class "grouped.data"; only the first column of frequencies is used.
freq logical; if TRUE, the histogram graphic is a representation of frequencies, the counts component of the result; if FALSE, probability densities, component density, are plotted (so that the histogram has a total area of one). Defaults to TRUE iff group boundaries are equidistant (and probability is not specified).
probability an alias for ! freq, for \(S\) compatibility.
density the density of shading lines, in lines per inch. The default value of NULL means that no shading lines are drawn. Non-positive values of density also inhibit the drawing of shading lines.
angle the slope of shading lines, given as an angle in degrees (counter-clockwise).
col a colour to be used to fill the bars. The default of NULL yields unfilled bars.
border the color of the border around the bars. The default is to use the standard foreground color.
main, xlab, ylab
these arguments to title have useful defaults here.
xlim, ylim the range of x and y values with sensible defaults. Note that xlim is not used to define the histogram (breaks), but only for plotting (when plot \(=\) TRUE).
axes logical. If TRUE (default), axes are draw if the plot is drawn.
plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks and counts is returned.
labels logical or character. Additionally draw labels on top of bars, if not FALSE; see plot.histogram.
... further graphical parameters passed to plot.histogram and their totitle and axis (if plot=TRUE).

\section*{Value}

An object of class "histogram" which is a list with components:
breaks the \(r+1\) group boundaries.
counts \(\quad r\) integers; the frequency within each group.
density the relative frequencies within each group \(n_{j} / n\), where \(n_{j}=\) counts [\(j\)].
intensities same as density. Deprecated, but retained for compatibility.
mids the \(r\) group midpoints.
xname a character string with the actual x argument name.
equidist logical, indicating if the distances between breaks are all the same.

\section*{Note}

The resulting value does not depend on the values of the arguments freq (or probability) or plot. This is intentionally different from S.

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{See Also}
hist and hist. default for histograms of individual data and fancy examples.

\section*{Examples}
```

data(gdental)

```
hist (gdental)
```

InverseBurr

```

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Inverse Burr distribution with parameters shape1, shape2 and scale.

\section*{Usage}
```

dinvburr(x, shape1, shape2, rate = 1, scale = 1/rate,
log = FALSE)
pinvburr(q, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvburr(p, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvburr(n, shape1, shape2, rate = 1, scale = 1/rate)
minvburr(order, shape1, shape2, rate = 1, scale = 1/rate)
levinvburr(limit, shape1, shape2, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
n number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required.
shape1, shape2, scale
parameters. Must be strictly positive.
rate an alternative way to specify the scale.
\(\log , \log \cdot \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Inverse Burr distribution with parameters shape \(1=\tau\), shape \(2=\gamma\) and scale \(=\theta\), has density:
\[
f(x)=\frac{\tau \gamma(x / \theta)^{\gamma \tau}}{x\left[1+(x / \theta)^{\gamma}\right]^{\tau+1}}
\]
for \(x>0, \tau>0, \gamma>0\) and \(\theta>0\).
The Inverse Burr is the distribution of the random variable
\[
\theta\left(\frac{X}{1-X}\right)^{1 / \gamma}
\]
where \(X\) has a Beta distribution with parameters \(\tau\) and 1.
The Inverse Burr distribution has the following special cases:
- A Loglogistic distribution when shape1 == 1;
- An Inverse Pareto distribution when shape2 == 1;
- An Inverse Paralogistic distribution when shape1 == shape2.

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dinvburr gives the density, invburr gives the distribution function, qinvburr gives the quantile function, rinvburr generates random deviates, minvburr gives the \(k\) th raw moment, and levinvburr gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN , with a warning.

\section*{Note}

Also known as the Dagum distribution.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dinvburr(2, 3, 4, 5, log = TRUE))
p <- (1:10)/10
pinvburr(qinvburr(p, 2, 3, 1), 2, 3, 1)
minvburr(2, 1, 2, 3) - minvburr(1, 1, 2, 3) ^ 2
levinvburr(10, 1, 2, 3, order = 2)

```

\section*{InverseExponential The Inverse Exponential Distribution}

\section*{Description}

Density function, distribution function, quantile function, random generation raw moments and limited moments for the Inverse Exponential distribution with parameter scale.

\section*{Usage}
```

dinvexp(x, rate = 1, scale = 1/rate, log = FALSE)
pinvexp(q, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
qinvexp(p, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
rinvexp(n, rate = 1, scale = 1/rate)
minvexp(order, rate = 1, scale = 1/rate)
levinvexp(limit, rate = 1, scale = 1/rate, order)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
n number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required.
scale parameter. Must be strictly positive.
rate an alternative way to specify the scale.
log, \(\log \cdot \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Inverse Exponential distribution with parameter scale \(=\theta\) has density:
\[
f(x)=\frac{\theta e^{-\theta / x}}{x^{2}}
\]
for \(x>0\) and \(\theta>0\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).
For numerical evaluation purposes, levinvexp requires that order \(<1\).

\section*{Value}
dinvexp gives the density, pinvexp gives the distribution function, qinvexp gives the quantile function, rinvexp generates random deviates, minvexp gives the \(k\) th raw moment, and levinvexp calculates the \(k\) th limited moment.
Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dinvexp(2, 2, log = TRUE))
p <- (1:10)/10
pinvexp(qinvexp (p, 2), 2)
minvexp(0.5, 2)

```

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments, and limited moments for the Inverse Gamma distribution with parameters shape and scale.

\section*{Usage}
```

dinvgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pinvgamma(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvgamma(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvgamma(n, shape, rate = 1, scale = 1/rate)
minvgamma(order, shape, rate = 1, scale = 1/rate)
levinvgamma(limit, shape, rate = 1, scale = 1/rate,
order = 1)
mgfinvgamma(x, shape, rate =1, scale = 1/rate, log =FALSE)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
n number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required.
shape, scale parameters. Must be strictly positive.
rate an alternative way to specify the scale.
\(\log , \log . \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Inverse Gamma distribution with parameters shape \(=\alpha\) and scale \(=\theta\) has density:
\[
f(x)=\frac{u^{\alpha} e^{-u}}{x \Gamma(\alpha)}, \quad u=\theta / x
\]
for \(x>0, \alpha>0\) and \(\theta>0\). (Here \(\Gamma(\alpha)\) is the function implemented by R's gamma () and defined in its help.)
The special case shape \(==1\) is an Inverse Exponential distribution.
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).
The moment generating function is given by \(E\left[e^{x X}\right]\).

\section*{Value}
dinvgamma gives the density, pinvgamma gives the distribution function, qinvgamma gives the quantile function, rinvgamma generates random deviates, minvgamma gives the \(k\) th raw moment, and levinvgamma gives the \(k\) th moment of the limited loss variable, mgfinvgamma gives the moment generating function in x .
Invalid arguments will result in return value NaN, with a warning.

\section*{Note}

Also known as the Vinci distribution.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dinvgamma(2, 3, 4, log = TRUE))
p <- (1:10)/10
pinvgamma(qinvgamma(p, 2, 3), 2, 3)
minvgamma(-1, 2, 2) ^ 2
levinvgamma(10, 2, 2, order = 1)
mgfinvgamma(1,3,2)

```
InverseParalogistic

\section*{The Inverse Paralogistic Distribution}

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Inverse Paralogistic distribution with parameters shape and scale.

\section*{Usage}
```

dinvparalogis(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pinvparalogis(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvparalogis(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvparalogis(n, shape, rate = 1, scale = 1/rate)
minvparalogis(order, shape, rate = 1, scale = 1/rate)
levinvparalogis(limit, shape, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((n)>1\), the length is taken to be the number required.
shape, scale parameters. Must be strictly positive.
rate an alternative way to specify the scale.
\(\log , \log . \mathrm{p} \quad\) logical; if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Inverse Paralogistic distribution with parameters shape \(=\tau\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\tau^{2}(x / \theta)^{\tau^{2}}}{x\left[1+(x / \theta)^{\tau}\right]^{\tau+1}}
\]
for \(x>0, \tau>0\) and \(\theta>0\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dinvparalogis gives the density, pinvparalogis gives the distribution function, qinvparalogis gives the quantile function, rinvparalogis generates random deviates, minvparalogis gives the \(k\) th raw moment, and levinvparalogis gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN , with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dinvparalogis(2, 3, 4, log = TRUE))
p <- (1:10)/10
pinvparalogis(qinvparalogis(p, 2, 3), 2, 3)
minvparalogis(-1, 2, 2)
levinvparalogis(10, 2, 2, order = 1)

```

InversePareto The Inverse Pareto Distribution

\section*{Description}

Density function, distribution function, quantile function, random generation raw moments and limited moments for the Inverse Pareto distribution with parameters shape and scale.

\section*{Usage}
```

dinvpareto(x, shape, scale, log = FALSE)
pinvpareto(q, shape, scale, lower.tail = TRUE, log.p = FALSE)
qinvpareto(p, shape, scale, lower.tail = TRUE, log.p = FALSE)
rinvpareto(n, shape, scale)
minvpareto(order, shape, scale)
levinvpareto(limit, shape, scale, order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((n)>1\), the length is taken to be the number required.
shape, scale parameters. Must be strictly positive.
\(\log , \log . \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Inverse Pareto distribution with parameters shape \(=\tau\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\tau \theta x^{\tau-1}}{(x+\theta)^{\tau+1}}
\]
for \(x>0, \tau>0\) and \(\theta>0\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).
Evaluation of levinvpareto is done using numerical integration.

\section*{Value}
dinvpareto gives the density, pinvpareto gives the distribution function, qinvpareto gives the quantile function, rinvpareto generates random deviates, minvpareto gives the \(k\) th raw moment, and levinvpareto calculates the \(k\) th limited moment.
Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dinvpareto(2, 3, 4, log = TRUE))
p <- (1:10)/10
pinvpareto(qinvpareto(p, 2, 3), 2, 3)
minvpareto(0.5, 1, 2)

```
```

InverseTransformedGamma

```

The Inverse Transformed Gamma Distribution

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments, and limited moments for the Inverse Transformed Gamma distribution with parameters shape1, shape 2 and scale.

\section*{Usage}
```

    dinvtrgamma(x, shape1, shape2, rate = 1, scale = 1/rate,
    log = FALSE)
    pinvtrgamma(q, shape1, shape2, rate = 1, scale = 1/rate,
    lower.tail = TRUE, log.p = FALSE)
    qinvtrgamma(p, shape1, shape2, rate = 1, scale = 1/rate,
    lower.tail = TRUE, log.p = FALSE)
    rinvtrgamma(n, shape1, shape2, rate = 1, scale = 1/rate)
    minvtrgamma(order, shape1, shape2, rate = 1, scale = 1/rate)
    levinvtrgamma(limit, shape1, shape2, rate = 1, scale = 1/rate,
        order = 1)
    ```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((n)>1\), the length is taken to be the number required.
shape1, shape2, scale
parameters. Must be strictly positive.
\begin{tabular}{ll}
rate & an alternative way to specify the scale. \\
log, log.p & logical; if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\). \\
lower.tail & logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\). \\
order & order of the moment. \\
limit & limit of the loss variable.
\end{tabular}

\section*{Details}

The Inverse Transformed Gamma distribution with parameters shape1 \(=\alpha\), shape \(2=\tau\) and scale \(=\theta\), has density:
\[
f(x)=\frac{\tau u^{\alpha} e^{-u}}{x \Gamma(\alpha)}, \quad u=(\theta / x)^{\tau}
\]
for \(x>0, \alpha>0, \tau>0\) and \(\theta>0\). (Here \(\Gamma(\alpha)\) is the function implemented by R's gamma () and defined in its help.)
The Inverse Transformed Gamma is the distribution of the random variable \(\theta X^{-1 / \tau}\), where \(X\) has a Gamma distribution with shape parameter \(\alpha\) and scale parameter 1 or, equivalently, of the random variable \(Y^{-1 / \tau}\) with \(Y\) a Gamma distribution with shape parameter \(\alpha\) and scale parameter \(\theta^{-\tau}\).
The Inverse Transformed Gamma distribution defines a family of distributions with the following special cases:
- An Inverse Gamma distribution when shape2 == 1;
- An Inverse Weibull distribution when shape1 == 1;
- An Inverse Exponential distribution when shape1 == shape2 == 1 ;

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dinvtrgamma gives the density, pinvtrgamma gives the distribution function, qinvtrgamma gives the quantile function, rinvtrgamma generates random deviates, minvtrgamma gives the \(k\) th raw moment, and levinvtrgamma gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN, with a warning.

\section*{Note}

Distribution also known as the Inverse Generalized Gamma.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dinvtrgamma(2, 3, 4, 5, log = TRUE))
p <- (1:10)/10
pinvtrgamma(qinvtrgamma(p, 2, 3, 4), 2, 3, 4)
minvtrgamma(2, 3, 4, 5)
levinvtrgamma(200, 3, 4, 5, order = 2)

```

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Inverse Weibull distribution with parameters shape and scale.

\section*{Usage}
```

dinvweibull(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pinvweibull(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvweibull(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvweibull(n, shape, rate = 1, scale = 1/rate)
minvweibull(order, shape, rate = 1, scale = 1/rate)
levinvweibull(limit, shape, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((n)>1\), the length is taken to be the number required.
shape, scale parameters. Must be strictly positive.
rate an alternative way to specify the scale.
log, log.p logical; if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Inverse Weibull distribution with parameters shape \(=\tau\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\tau(\theta / x)^{\tau} e^{-(\theta / x)^{\tau}}}{x}
\]
for \(x>0, \tau>0\) and \(\theta>0\).
The special case shape \(==1\) is an Inverse Exponential distribution.
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dinvweibull gives the density, pinvweibull gives the distribution function, qinvweibull gives the quantile function, rinvweibull generates random deviates, minvweibull gives the \(k\) th raw moment, and levinvweibull gives the \(k\) th moment of the limited loss variable. Invalid arguments will result in return value NaN , with a warning.

\section*{Note}

Distribution also knonw as the log-Gompertz.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dinvweibull(2, 3, 4, log = TRUE))
p <- (1:10)/10
pinvweibull(qinvweibull(p, 2, 3), 2, 3)
mlgompertz(-1, 3, 3)
levinvweibull(10, 2, 3, order = 2)

```

InvGaussSupp Moments and Moment Generating Function of the Inverse Gaussian Distribution

\section*{Description}

Raw moments, limited moments and moment generating function for the Inverse Gaussian distribution with parameters nu and lambda.

\section*{Usage}
```

minvGauss(order, nu, lambda)
levinvGauss(limit, nu, lambda, order = 1)
mgfinvGauss(x, nu, lambda, log= FALSE)
minvgauss(order, nu, lambda)
levinvgauss(limit, nu, lambda, order = 1)
mgfinvgauss(x, nu, lambda, log= FALSE)

```

\section*{Arguments}
order order of the moment. Only order = 1 is supported by levinvGauss.
limit limit of the loss variable.
nu, lambda parameters. Must be strictly positive.
\(\mathrm{x} \quad\) numeric vector.
\(\log \quad\) logical; if TRUE, the cumulant generating function is returned.

\section*{Details}

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\), the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\) and the moment generating function is \(E\left[e^{x X}\right]\).

\section*{Value}
minvGauss gives the \(k\) th raw moment, levinvGauss gives the \(k\) th moment of the limited loss variable, and mgfinvGauss gives the moment generating function in x .

Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Christophe Dutang

\section*{References}

Chhikara, R. S. and Folk, T. L. (1989), The Inverse Gaussian Distribution: Theory, Methodology and Applications, Decker.

Seshadri, D. N. (1989), The Inverse Gaussian Distribution: Statistical Theory and Applications, Springer.

\section*{See Also}
invGauss in package SuppDists for the density function, distribution function, quantile function and random number generator.

\section*{Examples}
```

minvGauss(2, 3, 4)
levinvGauss(10, 3, 4)
mgfinvGauss(1,3,2)

```

Loggamma The Loggamma Distribution

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Loggamma distribution with parameters shapelog and ratelog.

\section*{Usage}
dlgamma(x, shapelog, ratelog, log = FALSE)
plgamma(q, shapelog, ratelog, lower.tail = TRUE, log.p = FALSE)
qlgamma(\(p\), shapelog, ratelog, lower.tail = TRUE, log.p = FALSE)
rlgamma(n, shapelog, ratelog)
mlgamma(order, shapelog, ratelog)
levlgamma(limit, shapelog, ratelog, order = 1)

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((n)>1\), the length is taken to be the number required.
shapelog, ratelog
parameters. Must be strictly positive.
\(\log , \log . \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Loggamma distribution with parameters shapelog \(=\alpha\) and ratelog \(=\lambda\) has density:
\[
f(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{(\log x)^{\alpha-1}}{x^{\lambda+1}}
\]
for \(x>1, \alpha>0\) and \(\lambda>0\). (Here \(\Gamma(\alpha)\) is the function implemented by R's gamma () and defined in its help.)
The Loggamma is the distribution of the random variable \(e^{X}\), where \(X\) has a Gamma distribution with shape parameter alpha and scale parameter \(1 / \lambda\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dlgamma gives the density, plgamma gives the distribution function, qlgamma gives the quantile function, rlgamma generates random deviates, mlgamma gives the \(k\) th raw moment, and levlgamma gives the \(k\) th moment of the limited loss variable.

Invalid arguments will result in return value NaN , with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Hogg, R. V. and Klugman, S. A. (1984), Loss Distributions, Wiley.

\section*{Examples}
```

exp(dlgamma(2, 3, 4, log = TRUE))
p <- (1:10)/10
plgamma(qlgamma(p, 2, 3), 2, 3)
mlgamma(2, 3, 4) - mlgamma(1, 3, 4)^2
levlgamma(10, 3, 4, order = 2)

```

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Loglogistic distribution with parameters shape and scale.

\section*{Usage}
```

dllogis(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pllogis(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qllogis(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rllogis(n, shape, rate = 1, scale = 1/rate)
mllogis(order, shape, rate = 1, scale = 1/rate)
levllogis(limit, shape, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p\) vector of probabilities.
n
number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required.
shape, scale parameters. Must be strictly positive.
rate an alternative way to specify the scale.
\(\log , \log . \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Loglogistic distribution with parameters shape \(=\gamma\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\gamma(x / \theta)^{\gamma}}{x\left[1+(x / \theta)^{\gamma}\right]^{2}}
\]
for \(x>0, \gamma>0\) and \(\theta>0\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dllogis gives the density, pllogis gives the distribution function, \(q \operatorname{llogis}\) gives the quantile function, rllogis generates random deviates, mllogis gives the \(k\) th raw moment, and levllogis gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN , with a warning.

\section*{Note}

Also known as the Fisk distribution.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dllogis(2, 3, 4, log = TRUE))
p <- (1:10)/10
pllogis(qllogis(p, 2, 3), 2, 3)
mllogis(1, 2, 3)
levllogis(10, 2, 3, order = 1)

```

Lognormalmoments Raw and Limited Moments of the Lognormal Distribution

\section*{Description}

Raw moments and limited moments for the lognormal distribution whose logarithm has mean equal to meanlog and standard deviation equal to sdlog.

\section*{Usage}
mlnorm(order, meanlog \(=0\), \(\operatorname{sdlog}=1\))
levlnorm(limit, meanlog \(=0\), sdlog \(=1\), order \(=1\))

\section*{Arguments}

> order order of the moment.
limit limit of the loss variable.
meanlog, sdlog
mean and standard deviation of the distribution on the \(\log\) scale with default values of 0 and 1 respectively.

\section*{Value}
mlnorm gives the \(k\) th raw moment and levlnorm gives the \(k\) th moment of the limited loss variable.

Invalid arguments will result in return value NaN , with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{See Also}

Lognormal for details on the lognormal distribution and functions \(\{d, p, q, r\}\) lnorm.

\section*{Examples}
```

mlnorm(2, 3, 4) - mlnorm(1, 3, 4)^2
levlnorm(10, 3, 4, order = 2)

```
mde Minimum Distance Estimation

\section*{Description}

Minimum distance fitting of univariate distributions, allowing parameters to be held fixed if desired.

\section*{Usage}
```

mde(x, fun, start, measure = c("CvM", "chi-square", "LAS"),
weights = NULL, ...)

```

\section*{Arguments}
x
fun function returning a cumulative distribution (for measure \(=\) " \(\mathrm{CvM} "\) and measure = "chi-square") or a limited expected value (for measure = "LAS") evaluated at its first argument.
start a named list giving the parameters to be optimized with initial values
measure either "CvM" for the Cramer-von Mises method, "chi-square" for the modified chi-square method, or "LAS" for the layer average severity method.
weights weights; see details.
... Additional parameters, either for fun or for optim. In particular, it can be used to specify bounds via lower or upper or both. If arguments of fun are included they will be held fixed.

\section*{Details}

The Cramer-von Mises method ("CvM") minimizes the squared difference between the theoretical cdf and the empirical cdf at the data points (for individual data) or the ogive at the knots (for grouped data).
The modified chi-square method ("chi-square") minimizes the modified chi-square statistic for grouped data, that is the squared difference between the expected and observed frequency within each group.
The layer average severity method ("LAS") minimizes the squared difference between the theoretical and empirical limited expected value within each group for grouped data.
All sum of squares can be weighted. If arguments weights is missing, weights default to 1 for measure \(=\) "CvM" and measure \(=\) "LAS"; for measure \(=\) "chi-square", weights default to \(1 / n_{j}\), where \(n_{j}\) is the frequency in group \(j=1, \ldots, r\).
Optimization is performed using opt im. For one-dimensional problems the Nelder-Mead method is used and for multi-dimensional problems the BFGS method, unless arguments named lower or upper are supplied when \(L-B F G S-B\) is used or method is supplied explicitly.

\section*{Value}

An object of class "mde", a list with two components:
estimate the parameter estimates, and
distance the distance.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{Examples}
```


## Individual data example

data(dental)
mde(dental, pexp, start = list(rate = 1/200), measure = "CvM")

## Example 2.21 of Klugman et al. (1998)

data(gdental)
mde(gdental, pexp, start = list(rate = 1/200), measure = "CvM")
mde(gdental, pexp, start = list(rate = 1/200), measure = "chi-square")
mde(gdental, levexp, start = list(rate = 1/200), measure = "LAS")

## Two-parameter distribution example

try(mde(gdental, ppareto, start = list(shape = 3, scale = 600),
measure = "CvM")) \# no convergence

## Working in log scale often solves the problem

pparetolog <- function(x, shape, scale)
ppareto(x, exp(shape), exp(scale))
( p <- mde(gdental, pparetolog, start = list(shape = log(3),
scale = log(600)), measure = "CvM") )
exp(p\$estimate)

```
```

mean.grouped.data Arithmetic Mean

```

\section*{Description}

Mean of grouped data objects.

\section*{Usage}
\#\# S3 method for class 'grouped.data':
mean (x, ...)

\section*{Arguments}
. . . further arguments passed to or from other methods.

X
 an object of class "grouped.data".

\section*{Details}

The mean of grouped data with group boundaries \(c_{1}, \ldots, c_{r}\) and group frequencies \(n_{1}, \ldots, n_{r}\) is
\[
\sum_{j=1}^{r} \frac{c_{j-1}+c_{j}}{2} n_{j}
\]

\section*{Value}

A named vector of means.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{See Also}
grouped. data to create grouped data objects; emm to compute higher moments.

\section*{Examples}
```

data(gdental)
mean(gdental)

```

\section*{Description}

Raw moments and moment generating function for the normal distribution with mean equal to mean and standard deviation equal to sd.

\section*{Usage}
```

mnorm(order, mean = 0, sd = 1)
mgfnorm(x, mean = 0, sd = 1, log = FALSE)

```

\section*{Arguments}
order vector of integers; order of the moment.
mean vector of means.
sd vector of standard deviations.
x numeric vector.
\(\log\)
logical; if TRUE, the cumulant generating function is returned.

\section*{Details}

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the moment generating function is \(E\left[e^{x X}\right]\).

Only integer moments are supported.

\section*{Value}
mnorm gives the \(k\) th raw moment and mgnorm gives the moment generating function in x . Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Christophe Dutang

\section*{References}

Johnson, N. L. and Kotz, S. (1970), Continuous Univariate Distributions, Volume 1, Wiley.

\section*{See Also}

Normal

\section*{Examples}
```

mgfnorm(0:4,1,2)
mnorm(3)

```
ogive Ogive for Grouped Data

\section*{Description}

Compute a smoothed empirical distribution function for grouped data.
ogive

\section*{Usage}
```

ogive(x, y = NULL, ...)

## S3 method for class 'ogive':

print(x, digits = getOption("digits") - 2, ...)

## S3 method for class 'ogive':

summary(object, ...)

## S3 method for class 'ogive':

knots(Fn, ...)

## S3 method for class 'ogive':

plot(x, main = NULL, xlab = "x", ylab = "F(x)", ...)

```

\section*{Arguments}
x an object of class "grouped. data" or a vector of group boundaries in ogive; for the methods, an object of class "ogive", typically.

Y a vector of group frequencies; used only if \(x\) does not inherit from class "grouped. data".
digits number of significant digits to use, see print.
Fn, object
an R object inheriting from "ogive".
main main title.
\(x l a b, y l a b\) labels of \(x\) and \(y\) axis.
. . . arguments to be passed to subsequent methods.

\section*{Details}

The ogive is a linear interpolation of the empirical cumulative distribution function.
The equation of the ogive is
\[
G_{n}(x)=\frac{\left(c_{j}-x\right) F_{n}\left(c_{j-1}\right)+\left(x-c_{j-1}\right) F_{n}\left(c_{j}\right)}{c_{j}-c_{j-1}}
\]
for \(c_{j-1}<x \leq c_{j}\) and where \(c_{0}, \ldots, c_{r}\) are the \(r+1\) group boundaries and \(F_{n}\) is the empirical distribution function of the sample.

\section*{Value}

For ogive, a function of class "ogive", inheriting from the "function" class.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

\section*{See Also}
grouped.data to create grouped data objects; quantile.grouped.data for the inverse function; approxfun, which is used to compute the ogive; stepfun for related documentation (even though the ogive is not a step function).

\section*{Examples}
```

data(gdental)
Fn <- ogive(gdental)
Fn
summary(Fn)
knots(Fn) \# the group boundaries
Fn(knots(Fn)) \# true values of the empirical cdf
Fn(c(80, 200, 2000)) \# linear interpolations
plot(Fn)

```
Paralogistic The Paralogistic Distribution

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Paralogistic distribution with parameters shape and scale.

\section*{Usage}
```

dparalogis(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pparalogis(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qparalogis(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rparalogis(n, shape, rate = 1, scale = 1/rate)
mparalogis(order, shape, rate = 1, scale = 1/rate)
levparalogis(limit, shape, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(\mathrm{x}, \mathrm{q}\)
\(p \quad\) vector of probabilities.
n
shape, scale parameters. Must be strictly positive.
rate an alternative way to specify the scale.
log, \(\log \cdot \mathrm{p} \quad \operatorname{logical;~if~TRUE,~probabilities/densities~} p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Paralogistic distribution with parameters shape \(=\alpha\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\alpha^{2}(x / \theta)^{\alpha}}{x\left[1+(x / \theta)^{\alpha}\right)^{\alpha+1}}
\]
for \(x>0, \alpha>0\) and \(\theta>0\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dparalogis gives the density, pparalogis gives the distribution function, qparalogis gives the quantile function, rparalogis generates random deviates, mparalogis gives the \(k\) th raw moment, and levparalogis gives the \(k\) th moment of the limited loss variable.

Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dparalogis(2, 3, 4, log = TRUE))
p <- (1:10)/10
pparalogis(qparalogis(p, 2, 3), 2, 3)
mparalogis(2, 2, 3) - mparalogis(1, 2, 3)^2
levparalogis(10, 2, 3, order = 2)

```
Pareto The Pareto Distribution

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Pareto distribution with parameters shape and scale.

\section*{Usage}
```

dpareto(x, shape, scale, log = FALSE)
ppareto(q, shape, scale, lower.tail = TRUE, log.p = FALSE)
qpareto(p, shape, scale, lower.tail = TRUE, log.p = FALSE)
rpareto(n, shape, scale)
mpareto(order, shape, scale)
levpareto(limit, shape, scale, order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required.
shape, scale parameters. Must be strictly positive.
\(\log , \log . \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Pareto distribution with parameters shape \(=\alpha\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}
\]
for \(x>0, \alpha>0\) and \(\theta\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dpareto gives the density, ppareto gives the distribution function, qpareto gives the quantile function, rpareto generates random deviates, mpareto gives the \(k\) th raw moment, and levpareto gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN , with a warning.

\section*{Note}

Distribution also known as the Pareto Type II or Lomax distribution.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dpareto(2, 3, 4, log = TRUE))
p <- (1:10)/10
ppareto(qpareto(p, 2, 3), 2, 3)
mpareto(1, 2, 3)
levpareto(10, 2, 3, order = 1)

```
PhaseType The Phase-type Distribution

\section*{Description}

Density, distribution function, random generation, raw moments and moment generating function for the (continuous) Phase-type distribution with parameters prob and rates.

\section*{Usage}
dphtype (x, prob, rates, log = FALSE)
pphtype(q, prob, rates, lower.tail = TRUE, log.p = FALSE)
rphtype(n, prob, rates)
mphtype (order, prob, rates)
mgfphtype(x, prob, rates, log = FALSE)

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(\mathrm{n} \quad\) number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required.
prob vector of initial probabilities for each of the transient states of of the underlying Markov chain. The initial probability of the absorbing state is 1 - sum (prob).
rates square matrix of the rates of transition among the states of the underlying Markov chain.
\(\log , \log . \mathrm{p} \quad \operatorname{logical}\); if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.

\section*{Details}

The phase-type distribution with parameters prob \(=\pi\) and rates \(=\boldsymbol{T}\) has density:
\[
f(x)=\pi e^{\boldsymbol{T} x} \boldsymbol{t}
\]
for \(x>0\) and \(f(0)=1-\pi e\), where \(\boldsymbol{e}\) is a column vector with all components equal to one, \(\boldsymbol{t}=-\boldsymbol{T} \boldsymbol{e}\) is the exit rates vector and \(e^{\boldsymbol{T} x}\) denotes the matrix exponential of \(\boldsymbol{T} x\). The matrix exponential of a matrix \(\boldsymbol{M}\) is defined as the Taylor series
\[
e^{M}=\sum_{n=0}^{\infty} \frac{\boldsymbol{M}^{n}}{n!}
\]

The parameters of the distribution must satisfy \(\pi \boldsymbol{e} \leq 1, \boldsymbol{T}_{i i}<0, \boldsymbol{T}_{i j} \geq 0\) and \(\boldsymbol{T e} \leq 0\).
The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the moment generating function is \(E\left[e^{x X}\right]\).

\section*{Value}
dphasetype gives the density, pphasetype gives the distribution function, rphasetype generates random deviates, mphasetype gives the \(k\) th raw moment, and mgfphasetype gives the moment generating function in x .
Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet<vincent.goulet@act.ulaval.ca> and Christophe Dutang

\section*{References}
http://en.wikipedia.org/wiki/Phase-type_distribution
Neuts, M. F. (1981), Generating random variates from a distribution of phase type, WSC '81: Proceedings of the 13th conference on Winter simulation, IEEE Press.

\section*{Examples}
```


## Erlang(3, 2) distribution

T <- cbind(c(-2, 0, 0), c(2, -2, 0), c(0, 2, -2))
pi <- c(1,0,0)
x <- 0:10
dphtype(x, pi, T) \# density
dgamma(x, 3, 2) \# same
pphtype(x, pi, T) \# cdf
pgamma(x, 3, 2) \# same
rphtype(10, pi, T) \# random values
mphtype(1, pi, T) \# expected value
curve(mgfphtype(x, pi, T), from = -10, to = 1)

```
```

quantile.aggregateDist
Quantiles of Aggregate Claim Amount Distribution

```

\section*{Description}

Quantile and Value-at-Risk methods for objects of class "aggregateDist".

\section*{Usage}
\#\# S3 method for class 'aggregateDist': quantile(x,
 probs \(=c(0.25,0.5,0.75,0.9,0.95,0.975,0.99,0.995)\),
 smooth \(=\) FALSE, names \(=\) TRUE, ...)
 \#\# S3 method for class 'aggregateDist':
 \(\operatorname{VaR}(x\), conf.level \(=c(0.9,0.95,0.99)\),
 smooth \(=\) FALSE, names = TRUE, ...)

\section*{Arguments}
\(x \quad\) an object of class "aggregateDist".
probs, conf.level
numeric vector of probabilities with values in \([0,1)\).
smooth logical; when TRUE and \(x\) is a step function, quantiles are linearly interpolated between knots.
names logical; if true, the result has a names attribute. Set to FALSE for speedup with many probs.
. . . further arguments passed to or from other methods.

\section*{Details}

The quantiles are taken directly from the cumulative distribution function defined in x . Linear interpolation is available for step functions.

\section*{Value}

A numeric vector, named if names is TRUE.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Louis-Philippe Pouliot

\section*{See Also}
```

aggregateDist

```

\section*{Examples}
```

model.freq <- expression(data = rpois(3))
model.sev <- expression(data = rlnorm(10, 1.5))
Fs <- aggregateDist("simulation", model.freq, model.sev, nb.simul = 1000)
quantile(Fs, probs = c(0.25, 0.5, 0.75))
VaR(Fs)

```
```

quantile.grouped.data

```

Quantiles of Grouped Data

\section*{Description}

Sample quantiles corresponding to the given probabilities for objects of class "grouped. data".

\section*{Usage}
\#\# S3 method for class 'grouped.data':
quantile(x, probs \(=\operatorname{seq}(0,1,0.25)\), names = TRUE, ...)

\section*{Arguments}
x an object of class "grouped. data".
probs numeric vector of probabilities with values in \([0,1]\).
names logical; if true, the result has a names attribute. Set to FALSE for speedup with many probs.
. . . further arguments passed to or from other methods.

\section*{Details}

The quantile function is the inverse of the ogive, that is a linear interpolation of the empirical quantile function.
The equation of the quantile function is
\[
x=\frac{c_{j}\left(F_{n}\left(c_{j-1}\right)-q\right)+c_{j-1}\left(q-F_{n}\left(c_{j}\right)\right.}{F_{n}\left(c_{j}\right)-F_{n}\left(c_{j-1}\right)}
\]
for \(0 \leq q \leq c_{j}\) and where \(c_{0}, \ldots, c_{r}\) are the \(r+1\) group boundaries and \(F_{n}\) is the empirical distribution function of the sample.

\section*{Value}

A numeric vector, named if names is TRUE.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>

\section*{See Also}
ogive for the smoothed empirical distribution of which quantile.grouped.data is an inverse; grouped. data to create grouped data objects.

\section*{Examples}
```

data(gdental)
quantile(gdental)
Fn <- ogive(gdental)
Fn(quantile(gdental)) \# inverse function

```
ruin Probability of Ruin

\section*{Description}

Calulation of infinite time probability of ruin in the models of Cramér-Lundberg and Sparre Andersen, that is with exponential or phase-type (including mixtures of exponentials, Erlang and mixture of Erlang) claims interarrival time.

\section*{Usage}
```

ruin(claims = c("exponential", "Erlang", "phase-type"), par.claims,
wait = c("exponential", "Erlang", "phase-type"), par.wait,
premium.rate = 1, tol = sqrt(.Machine\$double.eps),
maxit = 200, echo = FALSE)

## S3 method for class 'ruin':

plot(x, from = NULL, to = NULL, add = FALSE,
xlab = "u", ylab = expression(psi(u)),
main = "Probability of Ruin", xlim = NULL, ...)

```

\section*{Arguments}
```

    claims character; the type of claim severity distribution.
    wait character; the type of claim interarrival (wait) time distribution.
    par.claims, par.wait
        named list containing the parameters of the distribution (see details).
    premium.rate numeric vector of length 1; the premium rate.
    tol, maxit, echo
    ```
 respectively the tolerance level of the stopping criteria, the maximum number
 of iterations and whether or not to echo the procedure when the transition rates
 matrix is determined iteratively. Ignored if wait = "exponential".
 \(x \quad\) an object of class "ruin".
 from, to the range over which the function will be plotted.
\begin{tabular}{ll}
add & logical; if TRUE add to already existing plot. \\
xlim & numeric of length 2; if specified, it serves as default for \(c(f r o m, t o)\). \\
xlab, ylab & label of the \(x\) and y axes, respectively. \\
main & main title. \\
\(\ldots\) & further graphical parameters accepted by curve.
\end{tabular}

\section*{Details}

The names of the parameters in par. claims and par. wait must the same as in dexp, dgamma or dphtype, as appropriate. A model will be a mixture of exponential or Erlang distributions (but not phase-type) when the parameters are vectors of length \(>1\) and the parameter list contains a vector weights of the coefficients of the mixture.

Parameters are recycled when needed. Their names can be abbreviated.
Combinations of exponentials as defined in Dufresne and Gerber (1988) are not supported.
Ruin probabilities are evaluated using pphtype except when both distributions are exponential, in which case an explicit formula is used.
When wait \(!=\) "exponential" (Sparre Andersen model), the transition rate matrix \(Q\) of the distribution of the probability of ruin is determined iteratively using a fixed point-like algorithm. The stopping criteria used is
\[
\max \left\{\sum_{j=1}^{n}\left|\boldsymbol{Q}_{i j}-\boldsymbol{Q}_{i j}^{\prime}\right|\right\}<\text { tol }
\]
where \(Q\) and \(\boldsymbol{Q}^{\prime}\) are two successive values of the matrix.

\section*{Value}

A function of class "ruin" inheriting from the "function" class to compute the probability of ruin given initial surplus levels. The function has arguments:
\(u \quad\) numeric vector of initial surplus levels;
survival logical; if FALSE (default), probabilities are \(\psi(u)\), otherwise, \(\phi(u)=1-\psi(u)\);
lower.tail an alias for !survival.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, and Christophe Dutang

\section*{References}

Asmussen, S. and Rolski, T. (1991), Computational methods in risk theory: A matrix algorithmic approach, Insurance: Mathematics and Economics 10, 259-274.

Dufresne, F. and Gerber, H. U. (1988), Three methods to calculate the probability of ruin, Astin Bulletin 19, 71-90.
Gerber, H. U. (1979), An Introduction to Mathematical Risk Theory, Huebner Foundation.

\section*{Examples}
```


## Case with an explicit formula: exponential claims and exponential

## interarrival times.

psi <- ruin(claims = "e", par.claims = list(rate = 5),
wait = "e", par.wait = list(rate = 3))
psi
psi(0:10)
plot(psi, from = 0, to = 10)

## Mixture of two exponentials for claims, exponential interarrival

## times (Gerber 1979)

psi <- ruin(claims = "e", par.claims = list(rate = c(3, 7), w = 0.5),
wait = "e", par.wait = list(rate = 3), pre = 1)
u <- 0:10
psi(u)
(24 * exp(-u) + exp(-6 * u))/35 \# same

## Phase-type claims, exponential interarrival times (Asmussen and

## Rolski 1991)

p <- c(0.5614, 0.4386)
r <- matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2)
lambda <- 1/(1.1 * mphtype(1, p, r))
psi <- ruin(claims = "p", par.claims = list(prob = p, rates = r),
wait = "e", par.wait = list(rate = lambda))
psi
plot(psi, xlim = c(0, 50))

## Phase-type claims, mixture of two exponentials for interarrival times

## (Asmussen and Rolski 1991)

a <- (0.4/5 + 0.6) * lambda
ruin(claims = "p", par.claims = list(prob = p, rates = r),
wait = "e", par.wait = list(rate = c(5 * a, a), weights =
c(0.4, 0.6)),
maxit = 225)

```
 severity Manipulation of Individual Claim Amounts

\section*{Description}
severity is a generic function created to manipulate individual claim amounts. The function invokes particular methods which depend on the class of the first argument.

\section*{Usage}
```

severity(x, ...)

## Default S3 method:

severity(x, bycol = FALSE, drop = TRUE, ...)

```

\section*{Arguments}

X
bycol

\section*{drop}
... further arguments to be passed to or from other methods.
an \(R\) object.
logical; whether to "unroll" horizontally (FALSE) or vertically (TRUE)
logical; if TRUE, the result is coerced to the lowest possible dimension.

\section*{Details}

Currently, the default method is equivalent to unroll. This is liable to change since the link between the name and the use of the function is rather weak.

\section*{Value}

A vector or matrix.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Louis-Philippe Pouliot

\section*{See Also}
severity.portfolio for the original motivation of these functions.

\section*{Examples}
```

x <- list(c(1:3), c(1:8), c(1:4), c(1:3))
(mat <- matrix(x, 2, 2))
severity(mat)
severity(mat, bycol = TRUE)

```
```

simul Simulation from Compound Hierarchical Models

```

\section*{Description}
simul simulates data for insurance applications allowing hierarchical structures and separate models for the frequency and severity of claims distributions.

\section*{Usage}
```

simul(nodes, model.freq = NULL, model.sev = NULL, weights = NULL)

## S3 method for class 'portfolio':

print(x, ...)

```

\section*{Arguments}
nodes a named list giving the number of "nodes" at each level in the hierarchy of the portfolio. The nodes are listed from top (portfolio) to bottom (usually the years of experience).
model.freq a named vector of expressions specifying the frequency of claims model (see details); if NULL, only claim amounts are simulated.
model.sev a named vector of expressions specifying the severity of claims model (see details); if NULL, only claim numbers are simulated.
weights a vector of weights.
x
a portfolio object.
potential further arguments required by generic.

\section*{Details}

The order and the names of the elements in nodes, model. freq and model. sev must match. At least one of model. freq and model. sev must be non NULL.
nodes specifies the hierarchical layout of the portfolio. Each element of the list is a vector of the number of nodes at a given level. Vectors are recycled as necessary.
model. freq and model. sev specify the simulation models for claim numbers and claim amounts, respectively. A model is expressed in a semi-symbolic fashion using an object of mode expression. Each element of the object must be named and should be a complete call to a random number generation function, with the number of variates omitted. Hierarchical (or mixtures of) models are achieved by replacing one or more parameters of a distribution at a given level by any combination of the names of the levels above. If no mixing is to take place at a level, the model for this level can be NULL.
The argument of the random number generation functions for the number of variates to simulate must be named \(n\).
Weights will be used wherever the name "weights" appears in a model. It is the user's responsibility to ensure that the length of weights will match the number of nodes when weights are to be used. Normally, there should be one weight per node at the lowest level of the model.
Data is generated in lexicographic order, that is by row in the output matrix.

\section*{Value}

An object of class "portfolio". A print method for this class displays the models used in the simulation as well as the frequency of claims for each year and entity in the portfolio.
An object of class "portfolio" is a list containing the following components:
data a two dimension list where each element is a vector of claim amounts;
weights the vector of weights given in argument reshaped as a matrix matching element
data, or NULL;
classification
a matrix of integers where each row is a unique set of subscripts identifying an entity in the portfolio (e.g. integers \(i, j\) and \(k\) for data \(X_{i j k t}\));
nodes the nodes argument, appropriately recycled;
model.freq the frequency model as given in argument;
model.sev the severity model as given in argument.
It is recommended to manipulate objects of class "portfolio" by means of the corresponding methods of functions aggregate, frequency and severity.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Sébastien Auclair and Louis-Philippe Pouliot

\section*{References}

Goulet, V. and Pouliot, L.-P. (2008), Simulation of compound hierarchical models in R, North American Actuarial Journal 12, 401-412.

\section*{See Also}
simul. summaries for the functions to create the matrices of aggregate claim amounts, frequencies and individual claim amounts.

\section*{Examples}
```


## Simple two level (contracts and years) portfolio with frequency model

## NitlTheta_i ~ Poisson(Theta_i), Theta_i ~ Gamma(2, 3) and severity

## model X ~ Lognormal(5, 1)

simul(nodes = list(contract = 10, year = 5),
model.freq = expression(contract = rgamma(2, 3),
year = rpois(contract)),
model.sev = expression(contract = NULL,
year = rlnorm(5, 1)))

## Model with weights and mixtures for both frequency and severity

## models

nodes <- list(entity = 8, year =c(5, 4, 4, 5, 3, 5, 4, 5))
mf <- expression(entity = rgamma(2, 3),
year = rpois(weights * entity))
ms <- expression(entity = rnorm(5, 1),
year = rlnorm(entity, 1))
wit <- sample(2:10, 35, replace = TRUE)
pf <- simul(nodes, mf, ms, wit)
pf \# print method
weights(pf) \# extraction of weights
aggregate(pf)[, -1]/weights(pf)[, -1] \# ratios

## Four level hierarchical model for frequency only

nodes <- list(sector = 3, unit =c(3, 4),
employer =c(3, 4, 3, 4, 2, 3, 4), year = 5)
mf <- expression(sector = rexp(1),
unit = rexp(sector),
employer = rgamma(unit, 1),
year = rpois(employer))

```
```

pf <- simul(nodes, mf, NULL)
pf \# print method
aggregate(pf) \# aggregate claim amounts
frequency(pf) \# frequencies
severity(pf) \# individual claim amounts

```
```

simul.summaries Summary Statistics of a Portfolio

```

\section*{Description}

Methods for class "portfolio" objects.
aggregate splits portfolio data into subsets and computes summary statistics for each.
frequency computes the frequency of claims for subsets of portfolio data.
severity extracts the individual claim amounts.
weights extracts the matrix of weights.

\section*{Usage}
\#\# S3 method for class 'portfolio':
aggregate (x, by = names (x\$nodes), FUN = sum,
 classification = TRUE, prefix = NULL, ...)
\#\# S3 method for class 'portfolio':
frequency(x, by = names (x\$nodes),
 classification = TRUE, prefix = NULL, ...)
\#\# S3 method for class 'portfolio':
severity(x, by = head(names(x\$node), -1), splitcol = NULL,
 classification \(=\) TRUE, prefix \(=\) NULL, ...)
\#\# S3 method for class 'portfolio':
weights(object, classification = TRUE, prefix = NULL, ...)

\section*{Arguments}
\(x\), object an object of class "portfolio", typically created with simul.
by character vector of grouping elements using the level names of the portfolio in \(x\). The names can be abbreviated.

FUN the function to be applied to data subsets.
classification
boolean; if TRUE, the node identifier columns are included in the output.
prefix characters to prefix column names with; if NULL, sensible defaults are used when appropriate.
splitcol columns of the data matrix to extract separately; usual matrix indexing methods are supported.
. . optional arguments to FUN, or passed to or from other methods.

\section*{Details}

By default, aggregate.portfolio computes the aggregate claim amounts for the grouping specified in by. Any other statistic based on the individual claim amounts can be used through argument FUN.
frequency.portfolio is equivalent to using aggregate. portfolio with argument FUN equal to if (identical(x, NA)) NA else length(x).
severity.portfolio extracts individual claim amounts of a portfolio by groupings using the default method of severity. Argument splitcol allows to get the individual claim amounts of specific columns separately.
weights.portfolio extracts the weight matrix of a portfolio.

\section*{Value}

A matrix or vector depending on the groupings specified in by.
For the aggregate and frequency methods: if at least one level other than the last one is used for grouping, the result is a matrix obtained by binding the appropriate node identifiers extracted from x\$classification if classification = TRUE, and the summaries per grouping. If the last level is used for grouping, the column names of \(x \$ d a t a\) are retained; if the last level is not used for grouping, the column name is replaced by the deparsed name of FUN. If only the last level is used (column summaries), a named vector is returned.
For the severity method: a list of two elements:
```

main NULL or a matrix of claim amounts for the columns not specified in splitcol,
with the appropriate node identifiers extracted from x\$classification if
classification = TRUE;
split same as above, but for the columns specified in splitcol.

```

For the weights method: the weight matrix of the portfolio with node identifiers if classification \(=\) TRUE.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Louis-Philippe Pouliot.

\section*{See Also}
simul

\section*{Examples}
```

nodes <- list(sector = 3, unit = c(3, 4),
employer = c(3, 4, 3, 4, 2, 3, 4), year = 5)
model.freq <- expression(sector = rexp(1),
unit = rexp(sector),
employer = rgamma(unit, 1),
year = rpois(employer))
model.sev <- expression(sector = rnorm(6, 0.1),
unit = rnorm(sector, 1),

```
```

            employer = rnorm(unit, 1),
            year = rlnorm(employer, 1))
    pf <- simul(nodes, model.freq, model.sev)
aggregate(pf) \# aggregate claim amount by employer and year
aggregate(pf, classification = FALSE) \# same, without node identifiers
aggregate(pf, by = "sector") \# by sector
aggregate(pf, by = "y") \# by year
aggregate(pf, by = c("s", "u"), mean) \# average claim amount
frequency(pf) \# number of claims
frequency(pf, prefix = "freq.") \# more explicit column names
severity(pf) \# claim amounts by row
severity(pf, by = "year") \# by column
severity(pf, by = c("s", "u")) \# by unit
severity(pf, splitcol = "year.5") \# last year separate
severity(pf, splitcol = 5) \# same
severity(pf, splitcol = c(FALSE, FALSE, FALSE, FALSE, TRUE)) \# same
weights(pf)

## For portfolios with weights, the following computes loss ratios.

## Not run: aggregate(pf, classif = FALSE) / weights(pf, classif = FALSE)

```
SingleParameterPareto

The Single-parameter Pareto Distribution

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments, and limited moments for the Single-parameter Pareto distribution with parameter shape.

\section*{Usage}
```

dpareto1(x, shape, min, log = FALSE)
pparetol(q, shape, min, lower.tail = TRUE, log.p = FALSE)
qparetol(p, shape, min, lower.tail = TRUE, log.p = FALSE)
rparetol(n, shape, min)
mparetol(order, shape, min)
levpareto1(limit, shape, min, order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((n)>1\), the length is taken to be the number required.
\begin{tabular}{ll}
shape & parameter. Must be strictly positive. \\
min & lower bound of the support of the distribution. \\
log, log.p & logical; if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\). \\
lower.tail & logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\). \\
order & order of the moment. \\
limit & limit of the loss variable.
\end{tabular}

\section*{Details}

The Single-parameter Pareto distribution with parameter shape \(=\alpha\) has density:
\[
f(x)=\frac{\alpha \theta^{\alpha}}{x^{\alpha+1}}
\]
for \(x>\theta, \alpha>0\) and \(\theta>0\).
Although there appears to be two parameters, only shape is a true parameter. The value of min \(=\theta\) must be set in advance.

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dparetol gives the density, pparetol gives the distribution function, qparetol gives the quantile function, rparetol generates random deviates, mparetol gives the \(k\) th raw moment, and levparetol gives the \(k\) th moment of the limited loss variable.

Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dparetol(5, 3, 4, log = TRUE))
p <- (1:10)/10
pparetol(qpareto1(p, 2, 3), 2, 3)
mparetol(2, 3, 4) - mpareto(1, 3, 4) ^ 2
levpareto(10, 3, 4, order = 2)

```

TransformedBeta The Transformed Beta Distribution

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Transformed Beta distribution with parameters shape1, shape2, shape3 and scale.

\section*{Usage}
```

dtrbeta(x, shape1, shape2, shape3, rate = 1, scale = 1/rate,
log = FALSE)
ptrbeta(q, shape1, shape2, shape3, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qtrbeta(p, shape1, shape2, shape3, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rtrbeta(n, shape1, shape2, shape3, rate = 1, scale = 1/rate)
mtrbeta(order, shape1, shape2, shape3, rate = 1, scale = 1/rate)
levtrbeta(limit, shape1, shape2, shape3, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\(x, q \quad\) vector of quantiles.
\(p \quad\) vector of probabilities.
\(n \quad\) number of observations. If length \((n)>1\), the length is taken to be the number required.
shape1, shape2, shape3, scale
parameters. Must be strictly positive.
rate an alternative way to specify the scale.
\(\log , \log \cdot \mathrm{p} \quad\) logical; if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\).
lower.tail logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\).
order order of the moment.
limit limit of the loss variable.

\section*{Details}

The Transformed Beta distribution with parameters shape1 \(=\alpha\), shape \(2=\gamma\), shape \(3=\tau\) and scale \(=\theta\), has density:
\[
f(x)=\frac{\Gamma(\alpha+\tau)}{\Gamma(\alpha) \Gamma(\tau)} \frac{\gamma(x / \theta)^{\gamma \tau}}{x\left[1+(x / \theta)^{\gamma}\right]^{\alpha+\tau}}
\]
for \(x>0, \alpha>0, \gamma>0, \tau>0\) and \(\theta>0\). (Here \(\Gamma(\alpha)\) is the function implemented by R's gamma () and defined in its help.)

The Transformed Beta is the distribution of the random variable
\[
\theta\left(\frac{X}{1-X}\right)^{1 / \gamma}
\]
where \(X\) has a Beta distribution with parameters \(\tau\) and \(\alpha\).
The Transformed Beta distribution defines a family of distributions with the following special cases:
- A Burr distribution when shape \(3=1\);
- A Loglogistic distribution when shape \(1==\) shape \(3==1\);
- A Paralogistic distribution when shape \(3=1\) and shape 2 == shape1;
- A Generalized Pareto distribution when shape2 == 1 ;
- A Pareto distribution when shape \(2==\) shape \(3=1\);
- An Inverse Burr distribution when shape1 == 1;
- An Inverse Pareto distribution when shape2 == shape1 == 1;
- An Inverse Paralogistic distribution when shape1 == 1 and shape 3 == shape 2 .

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dtrbeta gives the density, ptrbeta gives the distribution function, qt rbeta gives the quantile function, rtrbeta generates random deviates, mtrbeta gives the \(k\) th raw moment, and levtrbeta gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN, with a warning.

\section*{Note}

Distribution also known as the Generalized Beta of the Second Kind and Pearson Type VI.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dtrbeta(2, 2, 3, 4, 5, log = TRUE))
p <- (1:10)/10
ptrbeta(qtrbeta(p, 2, 3, 4, 5), 2, 3, 4, 5)
qpearson6(0.3, 2, 3, 4, 5, lower.tail = FALSE)
mtrbeta(2, 1, 2, 3, 4) - mtrbeta(1, 1, 2, 3, 4) ^ 2
levtrbeta(10, 1, 2, 3, 4, order = 2)

```

\section*{Description}

Density function, distribution function, quantile function, random generation, raw moments and limited moments for the Transformed Gamma distribution with parameters shape1, shape2 and scale.

\section*{Usage}
```

dtrgamma(x, shape1, shape2, rate = 1, scale = 1/rate,
log = FALSE)
ptrgamma(q, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qtrgamma(p, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rtrgamma(n, shape1, shape2, rate = 1, scale = 1/rate)
mtrgamma(order, shape1, shape2, rate = 1, scale = 1/rate)
levtrgamma(limit, shape1, shape2, rate = 1, scale = 1/rate,
order = 1)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline \(\mathrm{x}, \mathrm{q}\) & vector of quantiles. \\
\hline p & vector of probabilities. \\
\hline n & number of observations. If length \((\mathrm{n})>1\), the length is taken to be the number required. \\
\hline \multicolumn{2}{|l|}{shape1, shape2, scale} \\
\hline & parameters. Must be strictly positive. \\
\hline rate & an alternative way to specify the scale. \\
\hline log, log.p & logical; if TRUE, probabilities/densities \(p\) are returned as \(\log (p)\). \\
\hline lower.tail & logical; if TRUE (default), probabilities are \(P[X \leq x]\), otherwise, \(P[X>x]\). \\
\hline & \\
\hline limit & limit of the loss variable. \\
\hline
\end{tabular}

\section*{Details}

The Transformed Gamma distribution with parameters shape1 \(=\alpha\), shape \(2=\tau\) and scale \(=\theta\) has density:
\[
f(x)=\frac{\tau u^{\alpha} e^{-u}}{x \Gamma(\alpha)}, \quad u=(x / \theta)^{\tau}
\]
for \(x>0, \alpha>0, \tau>0\) and \(\theta>0\). (Here \(\Gamma(\alpha)\) is the function implemented by R's gamma () and defined in its help.)

The Transformed Gamma is the distribution of the random variable \(\theta X^{1 / \tau}\), where \(X\) has a Gamma distribution with shape parameter \(\alpha\) and scale parameter 1 or, equivalently, of the random variable \(Y^{1 / \tau}\) with \(Y\) a Gamma distribution with shape parameter \(\alpha\) and scale parameter \(\theta^{\tau}\).

The Transformed Gamma probability distribution defines a family of distributions with the following special cases:
- A Gamma distribution when shape2 == 1;
- A Weibull distribution when shape1 == 1;
- An Exponential distribution when shape \(2==\) shape1 \(==1\).

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
dtrgamma gives the density, ptrgamma gives the distribution function, qtrgamma gives the quantile function, rtrgamma generates random deviates, mtrgamma gives the \(k\) th raw moment, and levtrgamma gives the \(k\) th moment of the limited loss variable.

Invalid arguments will result in return value NaN , with a warning.

\section*{Note}

Distribution also known as the Generalized Gamma.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{Examples}
```

exp(dtrgamma(2, 3, 4, 5, log = TRUE))
p <- (1:10)/10
ptrgamma (qtrgamma (p, 2, 3, 4), 2, 3, 4)
mtrgamma (2, 3, 4, 5) - mtrgamma (1, 3, 4, 5) ^ 2
levtrgamma(10, 3, 4, 5, order = 2)

```
\begin{tabular}{ll}
\hline Uni formSupp & \begin{tabular}{l}
Moments and Moment Generating Function of the Uniform Distribu- \\
tion
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}

Raw moments, limited moments and moment generating function for the Uniform distribution from min to max.

\section*{Usage}
```

munif(order, min = 0, max = 1)
levunif(limit, min = 0, max =1, order = 1)
mgfunif(x, min = 0, max = 1, log = FALSE)

```

\section*{Arguments}
order order of the moment.
\(\min , \max \quad\) lower and upper limits of the distribution. Must be finite.
limit limit of the random variable.
x numeric vector.
\(\log \quad\) logical; if TRUE, the cumulant generating function is returned.

\section*{Details}

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\), the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\) and the moment generating function is \(E\left[e^{x X}\right]\).

\section*{Value}
munif gives the \(k\) th raw moment, levunif gives the \(k\) th moment of the limited random variable, and \(m g f u n i f\) gives the moment generating function in \(x\).

Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca>, Christophe Dutang

\section*{References}
http://en.wikipedia.org/wiki/Uniform_distribution_\%28continuous\%29

\section*{See Also}

\section*{Examples}
```

munif(-1)
munif(1:5)
levunif(3, order=1:5)
levunif(3, 2,4)
mgfunif(1,1,2)

```
 unroll Display a Two-Dimension Version of a Matrix of Vectors

\section*{Description}

Displays all values of a matrix of vectors by "unrolling" the object vertically or horizontally.

\section*{Usage}
unroll(x, bycol = FALSE, drop = TRUE)

\section*{Arguments}

X
bycol logical; whether to unroll horizontally (FALSE) or vertically (TRUE).
drop logical; if TRUE, the result is coerced to the lowest possible dimension.

\section*{Details}
unroll returns a matrix where elements of x are concatenated ("unrolled") by row (bycol = FALSE) or by column (bycol = TRUE). NA is used to make rows/columns of equal length.

Vectors and one dimensional arrays are coerced to row matrices.

\section*{Value}

A vector or matrix.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Louis-Philippe Pouliot

\section*{See Also}

This function was originally written for use in severity.portfolio.

\section*{Examples}
```

    x <- list(c(1:3), c(1:8), c(1:4), c(1:3))
    (mat <- matrix(x, 2, 2))
    unroll(mat)
    unroll(mat, bycol = TRUE)
    unroll(mat[1, ])
    unroll(mat[1, ], drop = FALSE)
    ```
 VaR Value at Risk

\section*{Description}

Value at Risk.

\section*{Usage}
\(\operatorname{VaR}(x, \ldots)\)

\section*{Arguments}
x

\section*{an R object.}
. . . further arguments passed to or from other methods.

\section*{Details}

This is a generic function with, currently, only a method for objects of class "aggregateDist".

\section*{Value}

An object of class numeric.

\section*{Author(s)}

Vincent Goulet <vincent. goulet@act.ulaval.ca> and Tommy Ouellet

\section*{See Also}
VaR.aggregateDist, aggregateDist

\section*{Description}

Raw moments and limited moments for the Weibull distribution with parameters shape and scale.

\section*{Usage}
mweibull(order, shape, scale = 1)
levweibull(limit, shape, scale \(=1\), order \(=1\))

\section*{Arguments}
order order of the moment.
limit limit of the loss variable.
shape, scale shape and scale parameters, the latter defaulting to 1 .

\section*{Details}

The \(k\) th raw moment of the random variable \(X\) is \(E\left[X^{k}\right]\) and the \(k\) th limited moment at some limit \(d\) is \(E\left[\min (X, d)^{k}\right]\).

\section*{Value}
mweibull gives the \(k\) th raw moment and levweibull gives the \(k\) th moment of the limited loss variable.
Invalid arguments will result in return value NaN, with a warning.

\section*{Author(s)}

Vincent Goulet <vincent.goulet@act.ulaval.ca> and Mathieu Pigeon

\section*{References}

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2008), Loss Models, From Data to Decisions, Third Edition, Wiley.

\section*{See Also}

Weibull for details on the Weibull distribution and functions \(\{d, p, q, r\}\) weibull.

\section*{Examples}
```

mweibull(2, 3, 4) - mweibull(1, 3, 4)^2
levweibull(10, 3, 4, order = 2)

```

\section*{Index}
*Topic array
Extract.grouped.data, 29
*Topic classes
grouped.data, 36
*Topic datagen
severity, 70
simul, 71
*Topic datasets
dental, 21
gdental, 31
hachemeister, 37
*Topic distribution
aggregateDist, 4
BetaMoments, 9
Burr, 10
ChisqSupp, 12
discretize, 22
ExponentialSupp, 27
GammaSupp, 30
GeneralizedBeta, 32
GeneralizedPareto, 34
hist.grouped.data, 38
InverseBurr, 39
InverseExponential, 41
InverseGamma, 43
InverseParalogistic, 44
InversePareto, 46
InverseTransformedGamma, 47
InverseWeibull, 49
InvGaussSupp, 50
Loggamma, 52
Loglogistic, 53
LognormalMoments, 55
mde, 56
NormalSupp, 58
Paralogistic, 61
Pareto, 63
PhaseType, 64
SingleParameterPareto, 76

TransformedBeta, 78
TransformedGamma, 80
UniformSupp, 82
WeibullMoments, 85
*Topic dplot
elev, 24
hist.grouped.data, 38
ogive, 59
*Topic hplot
elev, 24
hist.grouped.data, 38
ogive, 59
*Topic htest
mde, 56
*Topic manip
Extract.grouped.data, 29
severity, 70
unroll, 83
*Topic methods
grouped.data, 36
simul.summaries, 74
*Topic models
aggregateDist, 4
cm, 13
coverage, 18
discretize, 22
ruin, 68
simul.summaries, 74
*Topic optimize
adjCoef, 2
*Topic univar
adjCoef, 2
CTE, 20
emm, 26
mean.grouped.data, 57
quantile.aggregateDist, 66
quantile.grouped.data, 67
VaR, 84
[.data.frame, 30
```

[.grouped.data,37
[.grouped.data
(Extract.grouped.data), 29
[<-.grouped.data
(Extract.grouped.data), 29
adjCoef,2
aggregate.portfolio
(simul.summaries),74
aggregateDist, 4, 20, 21, 23, 66, 84
approxfun, 61
as.data.frame, 14
as.integer, 29
axis,39
Beta,9
BetaMoments,9
Burr, 10,79
ChisqSupp,12
Chisquare, 13
class,70, 72, 74
cm, 13
colMeans, 26
Coverage (coverage), 18
coverage,18
CTE,20
CTE.aggregateDist,8
curve, 22,69
data.frame, 36,37
dbinom,6
dburr(Burr), 10
dental,21
dexp,69
dgamma, 69
dgenbeta(GeneralizedBeta), 32
dgenpareto(GeneralizedPareto), 34
dgeom,6
diff.aggregateDist
(aggregateDist),4
dim, }8
dinvburr(InverseBurr), 39
dinvexp(InverseExponential),41
dinvgamma(InverseGamma),43
dinvparalogis
(InverseParalogistic),44
dinvpareto(InversePareto),46

```
dinvtrgamma
(InverseTransformedGamma), 47
dinvweibull(InverseWeibull), 49
discretise(discretize), 22
discretize, 8,22
dlgamma (Loggamma), 52
dlgompertz(InverseWeibull), 49
dllogis(Loglogistic), 53
dnbinom, 6
dparalogis(Paralogistic), 61
dpareto (Pareto), 63
dpareto1 (SingleParameterPareto), 76
dpareto2 (Pareto), 63
dpearson6(TransformedBeta), 78
dphtype, 69
dphtype (PhaseType), 64
dpois, 6
dtrbeta(TransformedBeta), 78
dtrgamma (TransformedGamma), 80
elev, 24
emm, 26, 58
Exponential, 28, 81
ExponentialSupp, 27
expression, 72
Extract.grouped.data, 29
format, 14
formula, 13, 14, 17
frequency.portfolio (simul.summaries), 74
function, 25, 60
Gamma, 81
gamma, 33, 34, 43, 48, 52, 78, 80
GammaDist, 31
GammaSupp, 30
gdental, 31
Generalized Pareto, 79
GeneralizedBeta, 32
GeneralizedPareto, 34
grouped. data, 25, 30, 32, 36, 58, 61, 68
hachemeister, 37
hist, 38, 39
hist. default, 38,39
hist.grouped.data, 38
integrate, 21
Inverse Burr, 79
Inverse Exponential, 43, 48, 50
Inverse Gamma, 48
Inverse Paralogistic, 40, 79
Inverse Pareto, 35, 40, 79
Inverse Weibull, 48
InverseBurr, 39
InverseExponential, 41
InverseGamma, 43
InverseParalogistic, 44
InversePareto, 46
InverseTransformedGamma, 47
InverseWeibull, 49
invGauss, 51
InvGaussSupp, 50
knots.elev (elev), 24
knots.ogive(ogive), 59
levbeta (BetaMoments), 9
levburr (Burr), 10
levchisq(ChisqSupp), 12
levexp (ExponentialSupp), 27
levgamma (GammaSupp), 30
levgenbeta (GeneralizedBeta), 32
levgenpareto (GeneralizedPareto), 34
levinvburr (InverseBurr), 39
levinvexp (InverseExponential), 41
levinvgamma (InverseGamma), 43
levinvGauss (InvGaussSupp), 50
levinvgauss (InvGaussSupp), 50
levinvparalogis
(InverseParalogistic), 44
levinvpareto(InversePareto), 46
levinvtrgamma
(InverseTransformedGamma), 47
levinvweibull (InverseWeibull), 49
levlgamma (Loggamma), 52
levlgompertz(InverseWeibull), 49
levllogis(Loglogistic), 53
levlnorm (LognormalMoments), 55
levparalogis (Paralogistic), 61
levpareto (Pareto), 63
levpareto1
(SingleParameterPareto), 76
levpareto2 (Pareto), 63
levpearson6(TransformedBeta), 78
levtrbeta (TransformedBeta), 78
levtrgamma (TransformedGamma), 80
levunif(UniformSupp), 82
levweibull (WeibullMoments), 85
lines, 2
lm, 14, 17
lm.fit, 15
lm.wfit, 15
Loggamma, 52
Loglogistic, 11, 40, 53, 79
Lognormal, 55
LognormalMoments, 55
mbeta (BetaMoments), 9
mburr(Burr), 10
mchisq(ChisqSupp), 12
Mde (mde), 56
mde, 56
mean, 27
mean.aggregateDist, 8
mean.aggregateDist
(aggregateDist), 4
mean.grouped.data, 27, 57
mexp (ExponentialSupp), 27
mgamma (GammaSupp), 30
mgenbeta (GeneralizedBeta), 32
mgenpareto(GeneralizedPareto), 34
mgfchisq(ChisqSupp), 12
mgfexp (ExponentialSupp), 27
mgfgamma (GammaSupp), 30
mgfinvgamma (InverseGamma), 43
mgfinvGauss (InvGaussSupp), 50
mgfinvgauss (InvGaussSupp), 50
mgfnorm (NormalSupp), 58
mgfphtype (PhaseType), 64
mgfunif(UniformSupp), 82
minvburr (InverseBurr), 39
minvexp (InverseExponential), 41
minvgamma (InverseGamma), 43
minvGauss (InvGaussSupp), 50
minvgauss (InvGaussSupp), 50
minvparalogis
(InverseParalogistic), 44
minvpareto(InversePareto), 46
minvtrgamma
(InverseTransformedGamma), 47
minvweibull(InverseWeibull), 49
mlgamma (Loggamma), 52
mlgompertz (InverseWeibull), 49
mllogis (Loglogistic), 53
mlnorm(LognormalMoments), 55
mnorm (NormalSupp), 58
mparalogis(Paralogistic), 61
mpareto (Pareto), 63
mparetol (SingleParameterPareto), 76
mpareto2 (Pareto), 63
mpearson6(TransformedBeta), 78
mphtype (PhaseType), 64
mtrbeta (TransformedBeta), 78
mtrgamma (TransformedGamma), 80
munif(UniformSupp), 82
mweibull (WeibullMoments), 85
Normal, 59
NormalSupp, 58
ogive, 59, 68
optim, 56
Paralogistic, 11, 61, 79
Pareto, 11, 35, 63, 79
pareto2 (Pareto), 63
pburr (Burr), 10
Pearson6(TransformedBeta), 78
pgenbeta(GeneralizedBeta), 32
pgenpareto(GeneralizedPareto), 34
PhaseType, 64
pinvburr(InverseBurr), 39
pinvexp (InverseExponential), 41
pinvgamma (InverseGamma), 43
pinvparalogis
(InverseParalogistic), 44
pinvpareto(InversePareto), 46
pinvtrgamma
(InverseTransformedGamma), 47
pinvweibull (InverseWeibull), 49
plgamma (Loggamma), 52
plgompertz (InverseWeibull), 49
pllogis(Loglogistic), 53
plot, 2
plot.adjCoef(adjCoef), 2
plot.aggregateDist
(aggregateDist), 4
plot.elev (elev), 24
plot.histogram, 38, 39
plot.ogive(ogive), 59
plot.ruin(ruin), 68
pparalogis(Paralogistic), 61
ppareto (Pareto), 63
pparetol(SingleParameterPareto), 76
ppareto2 (Pareto), 63
ppearson6(TransformedBeta), 78
pphtype, 69
pphtype (PhaseType), 64
predict.cm(cm), 13
predict.lm, 16, 17
print, 25, 60
print.aggregateDist
(aggregateDist), 4
print.cm(cm), 13
print.elev(elev), 24
print.ogive(ogive), 59
print.portfolio(simul), 71
print.summary.cm (cm), 13
ptrbeta (TransformedBeta), 78
ptrgamma (TransformedGamma), 80
qburr (Burr), 10
qgenbeta (GeneralizedBeta), 32
qgenpareto(GeneralizedPareto), 34
qinvburr(InverseBurr), 39
qinvexp (InverseExponential), 41
qinvgamma (InverseGamma), 43
qinvparalogis
(InverseParalogistic), 44
qinvpareto(InversePareto), 46
qinvtrgamma
(InverseTransformedGamma), 47
qinvweibull (InverseWeibull), 49
qlgamma (Loggamma), 52
qlgompertz (InverseWeibull), 49
qllogis(Loglogistic), 53
qparalogis(Paralogistic), 61
qpareto(Pareto), 63
qparetol (SingleParameterPareto), 76
qpareto2 (Pareto), 63
qpearson6(TransformedBeta), 78
qtrbeta (TransformedBeta), 78
qtrgamma (TransformedGamma), 80
quantile.aggregateDist, 8,66
quantile.grouped.data, 61,67
rburr (Burr), 10
rgenbeta(GeneralizedBeta), 32
rgenpareto(GeneralizedPareto), 34
rinvburr(InverseBurr), 39
rinvexp (InverseExponential), 41
rinvgamma (InverseGamma), 43
rinvparalogis
(InverseParalogistic), 44
rinvpareto(InversePareto), 46
rinvtrgamma
(InverseTransformedGamma), 47
rinvweibull (InverseWeibull), 49
rlgamma (Loggamma), 52
rlgompertz (InverseWeibull), 49
rllogis(Loglogistic), 53
rparalogis(Paralogistic), 61
rpareto (Pareto), 63
rparetol (SingleParameterPareto), 76
rpareto2 (Pareto), 63
rpearson6(TransformedBeta), 78
rphtype (PhaseType), 64
rtrbeta (TransformedBeta), 78
rtrgamma (TransformedGamma), 80
ruin, 68
severity, 70,75
severity.portfolio, 71,83
severity.portfolio
(simul.summaries), 74
simpf(simul), 71
simul, \(5,7,8,71,74,75\)
simul.summaries, 73,74
SingleParameterPareto, 76
stepfun, 25, 61
subset, 14,17
summary.aggregateDist
(aggregateDist), 4
summary.cm (cm), 13
summary.elev (elev), 24
summary.ogive (ogive), 59
terms, 15
title, 39
TransformedBeta, 78
TransformedGamma, 80

TVaR (CTE), 20
Uniform, 82
UniformSupp, 82
unroll, 71, 83
VaR, 21, 84
VaR.aggregateDist, 84
VaR.aggregateDist
(quantile.aggregateDist), 66

Weibull, 81,85
WeibullMoments, 85
weights.portfolio
(simul.summaries), 74```

