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Abstract

This paper investigates the dynamics of stocks in the S&P500 for
the last 33 years, considering the population of all companies present
in the index for the whole period. Using a stochastic geometry tech-
nique and defining a robust index of the dynamics of the market struc-
ture, which is able to provide information about the intensity of the
crises, the paper proposes a seismographic classification of the crashes
that occurred during the period. The index is used in order to inves-
tigate and to classify the impact of the twelve crashes between July
1973 and March 2006 and to discuss the available evidence of change
of structure after the fin de sicle.
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1 Introduction

The nature of financial crashes has been intensely discussed for long. Re-
cently some new methods are being used to analyze and describe the dy-
namics of changes in complex markets, based on different contributions from
econophysics. This paper recurs to such methods and the available infor-
mation on the trajectories of returns of dominating firms for three decades
in order to propose new measures and a classification of the intensity of the
crises. As a measure for these perturbations is defined, our investigation
follows previous papers comparing them to ”economic earthquakes” [1, 2, 3,
4] and, in particular, the suggestion that the histogram of price changes for
any stock is ”the analog of the Gutenberg-Richter histogram of earthquake
magnitude” [1], developing a new strategy for the quantification and qualifi-
cation of these extreme events. Inquiries into the statistical properties of this
distribution suggest the existence of a hierarchical organization expressed as
scale invariance over the history of the values of a control parameter [1]. Sec-
tion 2 presents the method and measures, whereas Section 3 summarize the
results.

2 Method and Measures

The stochastic geometry strategy is simply stated in the following terms [5]:

1. Pick a representative set of N stocks and their historical data of re-
turns over some time interval and, from the returns data, using an
appropriate metric, compute the matrix of distances between the N
stocks.

The problem is reduced to an embedding problem in which, given a set
of distances between points, one asks what is the smallest manifold that
contains the set. Given a graph G and an allowed distortion there are
algorithmic techniques to map the graph vertices to a normed space in
such a way that distances between the vertices of G match the distances
between their geometric images, up to the allowed distortion. However,
these techniques are not directly applicable to our problem because in
the distances between assets, computed from their return fluctuations,
there are systematic and unsystematic contributions. Therefore, to
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extract relevant information from the market, we have somehow to
separate these two effects. The following stochastic geometry technique
is used:

2. From the matrix of distances compute the coordinates for the N stocks
in an Euclidean space of dimension smaller than N and then apply the
standard analysis of reduction of the coordinates to the center of mass
and compute the eigenvectors of the inertial tensor.

3. Apply the same technique to surrogate data, namely to data obtained
by independent time permutation for each stock and compare these
eigenvalues with those obtained in (2), in order to identify the directions
for which the eigenvalues are significantly different as being the market
characteristic dimensions.

In so doing, we are attempting to identify the empirically constructed
variables that drive the market and the number of surviving eigenvalues
is the effective dimension of this economic space.

4. From the eigenvalues of order smaller than the number of characteristic
dimensions, compute the difference between eigenvalues in (2) with
those in (3). The normalized sum of those differences is the index S,
which measures the evolution of the distortion effect in the shape of
the market space.

For both surrogate and actual data, the sorted eigenvalues, from large to
small, decrease with their order. In the surrogate case, the amount of decrease
is linear in the order number, proving that the directions are being extracted
from a spherical configuration. The display of a uniform and smooth decrease
in the values of the sorted eigenvalues is characteristic of random cases and is
also experimentally observed when the market space is built from historical
data corresponding to a period of business as usual.

Considering the lack of uniformity among the market effective dimensions
we are able to characterize the extent to which crashes act differently on
specific directions, causing changes in the shape of the market space. Looking
for relevant distortions in the shape of the S&P500 market space through
the last 33 years, we found that amongst the highest values of the index
are those computed for some important dates, as 19th October 1987, 27th
October 1997 and 11th September 2001.

From the returns for each stock
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r(k) = log(pt(k))− log(pt−1(k)) (1)

a normalized vector

−→ρ (k) =
−→r (k)−〈−→r (k)〉q

n(〈r2(k)〉−〈r(k)〉2)
(2)

is defined, where n is the number of components (number of time labels)
in the vector −→ρ . With this vector one defines the distance between the stocks
k and l by the Euclidian distance of the normalized vectors.

dij =
√

2 (1− Cij) = ‖−→ρ (k)−−→ρ (l)‖ (3)

as proposed in [6], with Cijbeing the correlation coefficient of the returns
r(i),r(j) .

The fact that is a properly defined distance gives a meaning to geometric
notions and geometric tools in the study of the market. Given that set
of distances between points, the question now is reduced to an embedding
problem: one asks what is the smallest manifold that contains the set. If the
proportion of systematic information present in correlations between stocks
is small, then the corresponding manifold will be a low-dimensional entity.
The following stochastic geometry technique was used for this purpose.

2.1 The stochastic geometry technique

After the distances ( dij) are calculated for the set of N stocks, they are
embedded in RD, where D < n, with coordinates −→x (k). The center of mass−→
R is computed and coordinates reduced to the center of mass.

−→
R = Σ−→kx(k)

k
(4)

−→y (k) = −→x (k)−−→R (5)

and the inertial tensor

Tij = Σk
−→yi (k)−→y j(k) (6)

is diagonalized to obtain the set of normalized eigenvectors { λi,
−→e i}.

The eigenvectors −→e i define the characteristic directions of the set of stocks.
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The characteristic directions correspond to the eigenvalues ( λi) that are
clearly different from those obtained from surrogate data. They define a
reduced subspace of dimension e, which carries the systematic information
related to the market correlation structure. In order to improve the decision
criterion on how many eigenvalues are clearly different from those obtained
from surrogate data, a normalized difference τ is computed:

τ(i) = λ(i) + 1− λ′(i) (7)

and the significantly different eigenvalues are those to which τ(i) > 1/2

2.2 Index of the market structure

As market spaces can be described as low dimension objects, the geometric
analysis is able to provide crucial information about their dynamics. In
previous papers, we developed different applications of this technique, namely
for the identification of periods of stasis and of mutation or crashes. Indeed,
market spaces tend to contract during crises along their effective dimensions,
but each crisis may act differently on specific dimensions. It is in order
to capture that distortion, namely the lack of uniformity along the market
effective dimensions, that we defined the market structure index, S [5]. Since
the largest f eigenvalues define the effective dimensionality of the economic
space, at time t, we compute S as:

St = Σf
i=1

λt(i)−λ′t(i)
λ′t(i)

= Σf
i=1

λt(i)
λ′t(i)

− 1 (8)

where λt(1), λt(2), ..., λt(f) are the largest f eigenvalues of the market
space and λ′t(1), λ′t(2), ..., λ′t(f) are the largest f eigenvalues obtained from
surrogate data, namely from data obtained by independent time permutation
of each stock. In computing S, at a given time t, both λt and λ′t are obtained
over the same time window and for the same set of stocks.

3 Results and Discussion

Results were computed using actual daily returns data and comparing them
to surrogate data that are generated by permuting each stock (one-day return
data) randomly in time. As each stock is independently permuted, time cor-
relations among stocks disappear while the resulting surrogate data preserve
the mean and the variance that characterize actual data.
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The set of actual data consists in 231 stocks present in S&P500 from
July 1973 to March 2006, considering all the surviving firms for the whole
period. Although we acknowledge that this population does not necessarily
represent the behavior of the whole economy, we consider the information
useful enough to provide information on trends of the dynamics of market,
as it includes a large part of the winners after a long period of competition.
The next section proposes a classification of these crashes according to the
value of S and using an inspiration from seismography.

3.1 A seismographic classification

An approximate value of the index S for the 1987 Crash, the Black Monday
(BM), is taken as the higher value of a scale from 8BM down to 1BM, or
S from 40 to 5. Market perturbations measuring less than 1BM are not
considered to qualify as market crashes. Although this does not suggest
any comparability or similarity of causes between earthquakes and financial
crises, this procedure for classification and quantification in seismography
[7] suggests a way of describing perturbations in speculative markets, since
both kinds of shocks tend to occur in all magnitudes and may be described
according to power laws.

3.2 The dynamics of crashes

The results are presented in Fig.1, where the plot shows the daily values of
S for the 33 years period. We used a time moving window of 16 days on a
market space including the 231 stocks. The highest values of S are marked
on the plot.

The highest peaks are identified and correspond to the following crashes
(chronological order):

1. October 1978, Iranian crisis

2. September 1979, Iranian crisis and second oil shock

3. August 1982, general recession

4. October 1987, the Black Monday

5. October 1989, a US crash
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Figure 1: The evolution of the index S measuring the evolution of the S&P500
structure for the surviving firms for 1973-2006

6. October 1997, the Asian crash

7. October 1998, the Russian crash

8. April 1999, the Japan crash

9. April 2000, Nasdaq

10. Dec.2000/Jan.2001, crashes in Argentina and Turkey

11. April 2001, the start of a world recession

12. September 2001, the terrorist attack against New York

13. July 2003, general recession

Table 1 shows the same 13 peaks and the corresponding values of Smax

and BM . The chronological order was replaced and the events were ordered
according to the values of Smax and BM .
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Table 1: Ranking of the crises according to Smax and BM
———————————————————–
Ranking Date Smax BM
1 October 1987 38.6 8
2 Dec.2000/Jan.2001 18.3 3.8
3 October 1989 10.6 2.2
4 Mar/April 2001 10.3 2.13
5 July 2003 9.53 2
6 October 1998 9.2 1.95
7 April 1999 9 1.9
8 October 1997 8.36 1.73
9 September 2001 7.95 1.65
10 April 2000 7.55 1.6
11 August 1982 7.5 1.55
12 October 1979 7.22 1.50
13 October 1978 6.60 1.37
———————————————————–

Along the whole period (33 years), the accumulated value of S (AS) is
computed and the successive cumulative histories are presented in Table 2,
the curve being drawn in Figure 2. In that figure, we measure the slope of
the curve that better fits AS for each year period, the slope quantifying each
successively longer history. The following table shows the values of the slope
for the histories obtained for each year.

Table 2: Slopes of the AS yearly fit
———————————————————–
Year Slope Year Slope Year Slope
1973 1.5 1974 2.1 1975 1.5
1976 1.2 1977 1.3 1978 2
1979 2 1980 1.5 1981 1.3
1982 1.7 1983 0.87 1884 1.4
1985 1.1 1986 1.3 1987 3.2
1988 1.4 1989 1.8 1990 1.7
1991 1.2 1992 1.1 1993 1.2
1994 1.1 1995 1.7 1996 1.4
1997 1.8 1998 2.5 1999 2.5
2000 4 2001 4.3 2002 3.2
2003 2.5 2004 2.6 2005 2.5
———————————————————–
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Figure 2: Accumulated values of S and their yearly fit

3.3 Empirical evidence for the change of structure

Studying the cumulative history of the index of market structure (Figure 2),
it is intuitive that a major change is occurring since around 1997, imposing
a new dynamic structure. This intuition is now investigated by empirical
means.

Figure 3 presents the empirical evidence for the concentration of seisms
in the period after 1997.

Any of these crashes ever compares to the one of 1987. Indeed, there are
some sound reasons to suspect the existence of different dynamics through
time in the evolution of financial markets. The 1987 crash singles out as the
deepest general crisis, incomparable to the following ones. The subsequent
years witnessed the response to that shock through the construction of new
methods of regulation. For a period, not only no large seisms occurred, but
also only smaller fluctuations are detectable. Yet, since the second half of the
nineties, we obtain higher average values of the index S and a concentration
of a number of crashes and their replica. This difference in the empirically
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Figure 3: Yearly fit of the slope of S (above) and Concentration of Crashes
through the period (below)

described evolution suggests that the Clinton period of the ”Internet boom”
corresponded to a new structure of the market or to emergence of a new
phase of turbulence in the financial markets.

Complementary evidence is provided by the computation of the Hurst
exponent for the period under consideration: whereas for 1973-1997 the ex-
ponent is H = 0.7, for the time interval 1997-2006 it is H = 0.87, indicating
stronger evidence for long term memory. Figure 4 shows the value of the
Hurst exponents for both periods, compared to the values obtained from time
permuted data, suggesting the presence and the evolution of some structure.
For the recent period, this structure is not under the impact of larger seisms
(such as the Black Monday) although it is defined by frequent and important
seismic activity.
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