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1 Introduction

In the very first page of his highly regarded novel, One Hundred Years of
Solitude, Gabriel Garcia Marquez writes that, when arriving at Macondo
and discovering so many unknown objects, Aurelio Buendia had to point
out these things because no words were defined for them. This metaphor of
the process of metaphorisation is an apt description of the scientific process
itself, as science points out to what it ignores: denotation generates connota-
tion. Even when science is defined as a self-contained logic, as mathematics
once presumed to be, it dares into the territories of the unknown and of the
unexpected; the more rigorous, the more daring it ought to be.

Yuri Manin [1], in the paper ”"Mathematics as Metaphor”, commented
precisely on this metaphoric quality of mathematics:

”Considering mathematics as a metaphor, I want to stress that
the interpretation of the mathematical knowledge is a highly cre-
ative act. In a way, mathematics is a novel about Nature and
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Humankind. One cannot tell precisely what mathematics teaches
us, in much the same way as one cannot tell what exactly we are
taught by ”War and Peace”.

The epic ”War and Peace” tells us much about Humankind, as the rigor
of mathematics proposes to do. In each case, an exploration into the nature
of evolution and change is at stake. The metaphors consequently produced,
either as imaginary descriptions or as precise formal models, suggest new
interpretations that therefore produce new meanings. Mathematics is se-
mantics.

In particular, complexity - a metaphor of natural and social relations to
be precisely analyzed by mathematical methods - defines an approach which
is more insightful to understand dynamics than traditional determinism and
positivism. In this paper, we argue that this metaphor is powerful enough
to suggest new methods to interpret the emergence of new patterns. In the
current example, a stochastic geometry and topological technique are used
to describe the structural change in the stock market for the last years.

This new method suggests evidence for a transition of regimes in these
markets, measures its dynamics and metaphorically provides a graphic de-
scription of the ongoing process.

Mathematics for Complex Systems Science

Complex Systems make use of a plenty of metaphorical developments
where the interpretation of the mathematical knowledge (the creative pro-
cess) gives place to at least two different (and apparently conflicting) per-
ceptions of the system.

The description of Complex Systems generally follows one of two strate-
gies:

1. Simple System with Complex Behaviour: They are simple sys-
tems because they are characterized by having few degrees of freedom.
Nevertheless the display unpredictable behaviour: deterministic and
yet apparently random.

e Mathematical tools: non-linear dynamics

— Ergodic Invariants

— measure theory,



— algebra,
— set theory

2. Complex Systems with Simple collective Dynamics : They are
complex systems because they are characterized by having many de-
grees of freedom. Nevertheless their collective dynamics display pat-
terns that can be observed at different levels. These patterns usually
obey to Scale Laws, giving place to the emergence of simple structures
that contrast to the huge amount of complexity that characterizes the
individual components of the system.

e Mathematical tools: creation of structures and self-organization

— FErgodic Invariants
— measure theory,

— algebra,

— set theory,

— graph theory

An interpretation of the apparently random financial market behaviour
would require, as a first step, an incursion in the territory of non-linear dy-
namics. To this purpose, it is usual to compute some Ergodic Invariants
(Lyapunov exponents, entropy measures) as an alternative to traditional
modelling of simple stochastic processes.

In the example here considered, we approach the stock market complexity
from the Collective Dynamics perspective. To this end, a stochastic geometry
technique is used to describe structural change. Topological tools help to
complete the picture, and provide a metaphorically approximation through
a graphic description of the ongoing market process.

Geometrical and Topological Tools for Complex Markets

Due to their unpredictable behaviour eluding so many established models,
stock markets have been widely discussed as an example of complex systems.
As a result of such efforts, in recent years new methods were suggested in
order to describe the dynamics of changes in the behaviour of complex mar-
kets. Because the huge amount of available data, some interesting methods
are based on empirically oriented and computationally highly demanding
approaches.



This paper develops and applies a stochastic geometry technique designed
in order to highlight the definition of a simple object that emerges from the
collective behaviour of a complex system. In the current case, the market is
described according to the evolution of the 253 stocks consistently measured
in the S&P500 index for the last 20 years.

The stochastic geometry proceeds to the metaphorical representation of a
stock market as a cloud of points in the space. The use of a properly defined
distance (computed from the correlation coefficients between stock returns)
gives a meaning to geometric and topological notions in the study of the
market.

Given that set of distances between points, our geometrical metaphor
discusses three semantic questions:

1. Has the cloud a characteristic dimension?

This is, in other words, the embedding question: what is the smallest
manifold that contains the set which has obviously many degrees of
freedom? Our strategy is based upon the intuition that, if the propor-
tion of systematic information present in correlations between stocks
is small, then the corresponding manifold is a low-dimensional entity,
which can be described.

2. Has the cloud any typical shape?

Again, the intuition is that, if the cloud is described as a low dimen-
sional object, its dynamics can be observed as the evolution of its form
as it is shaped by the occurrence of bubbles and crises.

In portfolio optimization models, when the systematic and unsystem-
atic contributions to the portfolio risk are distinguished, the former
is associated to the correlation between stocks (collective structure)
and the later to the individual variances of each stock. Consequently,
the leading directions obtained from surrogate data may be taken as
reference values that represent the characteristic size with which it con-
tributes to the shape of a market whose components were uncorrelated.
They correspond to the characteristic size of the individual (isolated)
components of the market. On the other hand, the each leading direc-
tions obtained from actual data represent the characteristic size of each
structure emerging from the dynamics of the market, that is, associated
to each leading direction of the market space.



3. Finally, does the evolution of the cloud follow any specific pattern?

Groups of stocks, having their position on the cloud determined by the
distance metric, are observed to evolve in a synchronous fashion. The
identification of this behaviour suggests the recourse to the application
of topological notions, in addition to the geometrical ones.

In a previous work, we used network coefficients to characterize the
existence of topological regimes: the clustering coefficient is proved to
contain maximal information on such processes of synchronization .

As in other fields of science [2], synchronization in the market plays
an important role in the identification of abnormal periods. When
the stock market is investigated, synchronization is at the root of the
disproportionate impact of public events relative to their intrinsic in-
formation content. Paradoxically, this applies to unanticipated public
events but also to pre-scheduled news announcements.

A new method is proposed in order to address these three questions.

2 A stochastic geometry to describe the mar-
ket

The stochastic geometry strategy is simply stated in the following terms [3]:

1. Pick a representative set of N stocks and their historical data of re-
turns over some time interval and, from the returns data, using an
appropriate metric, compute the matrix of distances between the N
stocks.

The problem is reduced to an embedding problem in which, given a set
of distances between points, one asks what is the smallest manifold that
contains the set. Given a graph G and an allowed distortion there are
algorithmic techniques to map the graph vertices to a normed space in
such a way that distances between the vertices of G match the distances
between their geometric images, up to the allowed distortion. However,
these techniques are not directly applicable to our problem because in
the distances between assets, computed from their return fluctuations,
there are systematic and unsystematic contributions. Therefore, to
extract relevant information from the market, we have somehow to



separate these two effects. The following stochastic geometry technique
is used:

2. From the matrix of distances compute the coordinates for the N stocks
in an Euclidean space of dimension smaller than N and then apply the
standard analysis of reduction of the coordinates to the center of mass
and compute the eigenvectors of the inertial tensor.

3. Apply the same technique to surrogate data, namely to data obtained
by independent time permutation for each stock and compare these
eigenvalues with those obtained in (2), in order to identify the directions
for which the eigenvalues are significantly different as being the market
characteristic dimensions.

In so doing, we are attempting to identify the empirically constructed
variables that drive the market and the number of surviving eigenvalues
is the effective dimension of this economic space.

4. From the eigenvalues of order smaller than the number of characteristic
dimensions, compute the difference between eigenvalues in (2) with
those in (3). The normalized sum of those differences is the index 5,
which measures the evolution of the distortion effect in the shape of
the market space.

For both surrogate and actual data, the sorted eigenvalues, from large to
small, decrease with their order. In the surrogate case, the amount of decrease
is linear in the order number, proving that the directions are being extracted
from a spherical configuration. The display of a uniform and smooth decrease
in the values of the sorted eigenvalues is characteristic of random cases and is
also experimentally observed when the market space is built from historical
data corresponding to a period of business as usual.

From the returns for each stock

r(k) = log(pi(k)) — log(pi-1(F)) (1)

a normalized vector




is defined, where n is the number of components (number of time labels)
in the vector p’. With this vector one defines the distance between the stocks
k and 1 by the Euclidian distance of the normalized vectors.

dy = VI = Cg) = [P (k) - T (3)

as proposed in ([4],[5]) with Cj; being the correlation coefficient of the
returns r(2),r(j) .

The fact that this is a properly defined distance gives a meaning to geo-
metric notions and geometric tools in the study of the market. Given that
set of distances between points, the question now is reduced to an embedding
problem: one asks what is the smallest manifold that contains the set. If the
proportion of systematic information present in correlations between stocks
is small, then the corresponding manifold will be a low-dimensional entity.
The following stochastic geometry technique was used for this purpose.

After the distances ( d;;) are calculated for the set of N stocks, they are
embedded in RP, where D < n, with coordinates 7' (k). The center of mass

H
R is computed and coordinates reduced to the center of mass.

= Sz (k
R = kk( ) (4)
Tk) =Tk - R (5)
and the inertial tensor
Tij = Sy (B)y (k) (6)

is diagonalized to obtain the set of normalized eigenvectors { \;, €;}.
The eigenvectors € ; define the characteristic directions of the set of stocks.
The characteristic directions correspond to the eigenvalues ( ;) that are
clearly different from those obtained from surrogate data. They define a
reduced subspace of dimension f, which carries the systematic information
related to the market correlation structure. In order to improve the decision
criterion on how many eigenvalues are clearly different from those obtained
from surrogate data, a normalized difference 7 is computed:

7(i) = A(@) +1— N(3) (7)

and the significantly different eigenvalues are those to which 7(i) > 1/2.



2.1 Index of the market structure

As market spaces can be described as low dimension objects, the geometric
analysis is able to provide crucial information about their dynamics. In
previous papers, we developed different applications of this technique, namely
for the identification of periods of stasis and of mutation or crashes. Indeed,
market spaces tend to contract during crises along their effective dimensions,
but each crisis may act differently on specific dimensions. It is in order
to capture that distortion, namely the lack of uniformity along the market
effective dimensions, that we defined the market structure index,S [5]. Since
the largest f eigenvalues define the effective dimensionality of the economic
space, at time t, we compute S as:
Sy = 2{:1—&(?;_(32@) = ZL&Z—EZ% —1 (8)
where A\(1), \i(2), ..., \i(f) are the largest f eigenvalues of the market
space and (1), N(2), ..., \i(f) are the largest f eigenvalues obtained from
surrogate data, namely from data obtained by independent time permutation
of each stock. In computing S, at a given time ¢, both A\; and A} are obtained
over the same time window and for the same set of stocks.

3 Results and discussion

The application of this measure allows for a description of the evolution of
the market for the period under consideration, identifying the shock waves
of crashes and measuring their impacts.

Furthermore, considering the lack of uniformity among the market effec-
tive dimensions, we are able to characterize the extent to which crashes act
differently on specific directions, causing changes in the shape of the mar-
ket space. The strategy of this measure is thus to identify the distortion of
the geometric object describing the market as a basis for the analysis of its
dynamics [6].

Looking for relevant distortions in the shape of the S&P500 market space
through the last years, we found that amongst the highest values of the index
are those computed for some moments of turbulence, such as 19th October
1987, 27th October 1997 and 11th September 2001, as expected (Fig. 1).
These crashes can be classified according to a seismography measuring their
impact and characteristics [7].
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Figure 1: Chronological concentration of crashes in the period under consid-
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The index provides information on the evolution of the cloud describing
the dynamics of the markets. It indicates the moments of perturbations,
proving that the dynamics is driven by shocks and by a structural change.
These changes are interpretable as a general dynamics, as suggested by Fig-
ures 5 and 6, which demonstrates how crashes cluster in the turn of the
century period and since then. But they are also interpretable as a dif-
ferential sectoral dynamics, since the market is also driven by speculative
processes which are fuelled by institutional decisions (such as changes in the
reference interest rate, for regulatory reasons) just as it is driven by the spell
of differential return and profit rates across sectors.

Indeed, the period after 1995, the Internet Boom, is marked both by the
low interest rates as by the high profitability of the ICT stocks and, contrary
to the popular description, it is a period of dense transformations and higher
risks in the stock market. A new regime is emerging, and it is a regime of
frequent storms, to proceed with our metaphor: the cloud is and eventually
will frequently distorted. In this sense, this period combines some of the
features of the 1920s and some of those characteristics of the manias for
canals and railways, which accompanied earlier waves of technical change in



Mar.1998 to Mar.2008
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Figure 2: 3-dimensional representation of a turbulent period

the nineteenth-century.

Considering the cumulative history of the index of market structure, it
emerges that a major change is occurring since around 1997, imposing a new
dynamic structure.

Reconsidering our three questions, an answer is provided by this empir-
ical approach. The cloud has a characteristic dimension, which allows for
a description projecting its typical shape and identifying the patterns of its
evolution. The index S is useful for this identification of shape and patterns
and defines our research, as it is derived from a system of measure and it is
part of the logic of a defined mathematics. The conception of the Collective
Dynamic of these object, the metaphor implicit in our method, is part of the
effort to point out those things we still ignore, as the late Colonel Aurelio
Buendia would say.
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Jul.1998 to Jul.2000
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Figure 3: 3-dimensional representation of a business-as-usual period
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