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Abstract

Due to their unpredictable behavior, stock markets are examples
of complex systems. Yet, the dominant analysis of these markets as-
sumes simple stochastic variations, eventually tainted by short-lived
memory. This paper proposes an alternative strategy, based on a
stochastic geometry defining a robust index of the structural dynamics
of the markets and based on notions of topology defining a new coef-
ficient that identifies the structural changes occurring on the S&P500
set of stocks. The results demonstrate the consistency of the random
hypothesis as applied to normal periods but they also show its in-
adequacy as to the analysis of periods of turbulence, for which the
emergence of collective behavior of sectoral clusters of firms is mea-
sured. This behavior is identified as a meta-routine.
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1 Introduction

The evolution of stock markets has been eluding many established models,
which interpret its dynamics according to the hypotheses that such markets
behave as a simile of Brownian motion. We follow an alternative strategy,
assuming a complex system: first, we look for evidence of structure as a
generator of perturbations, and not of white noise shocks devoid of any in-
formation; second, we argue that an empirically based interpretation of this
dynamics is possible and effective in the detection of patterns of change,
and, third, we identify this formation of patterns as a meta-routine. The an-
alytical method, based on empirically oriented and computationally highly
demanding techniques, is guided by these choices.

This paper develops and applies a stochastic geometry approach designed
to describe the dynamics of the object emerging from the collective behavior
of the complex system. In the current case, the market is analyzed according
to the evolution of the population of two examples: the first one considers
253 stocks of the S&P500 index including all the surviving firms for the
whole period from August 1988 to January 2008. In the second example, we
consider the 424 stocks of the S&P500 including all the surviving firms for
the more recent period from January 1998 to March 2008.

We define a metric and use a properly defined distance, computed from
the correlation coefficients between daily returns of all these firms, and then
proceed to the identification of the geometric object formed by the set of
distances among such firms. The results prove that the resulting ellipsoid
is a cloud of points, which is uniformly distributed along its first leading
directions, whenever business-as-usual predominates, but that it is suffers
severe distortions along several dimensions whenever a crisis occurs. The
geometric and topological properties of the dynamics of this market can be
measured and guide an empirically oriented interpretation of its evolution
([1], [2]).

The approach we suggest allows for:

1. the identification of the minimum number of relevant dimensions de-
scribing the evolution of the market;

2. the identification of the dimensions along which the distortion occurs;

3. the measurement of the effect of that distortion;
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4. the identification of the patterns of change in the market and, namely,

5. of its sectoral dynamics.

The last point is the theme for this paper, in which we argue for a more
general concept of sectoral routines based on these patterns of change.

2 The behavior of tribes under threat

The existence of a large number of degrees of freedom in the action of spec-
ulative markets, as well as in others, was discussed in economic theory from
two opposed points of view. One is reminiscent of the early social statis-
tics of Adolphe Quetelet: although there are many individuals, order reigns
supreme given the averaging out of their characteristics and actions. The
”homme moyen” of Quetelet and the ”representative agent” of Alfred Mar-
shall and neoclassical economics meet in the forest of intentions and actions
in the market. In that framework, determinism is recapitulated as com-
manding laws of behavior and economic theory postulates the dominance of
an ordered structure, eventually with simple random shocks impinging upon
the course of the system and whose distribution follows a Gaussian law, the
language of perturbations in Nature.

Another view was proposed by Trygve Haavelmo as he proposed the re-
construction of economics according to the probability approach. In this
case, all economic variables are redefined as stochastic processes: order itself
is randomness. The degrees of freedom describe the uncertainty of agents
in their actions, of the scientist in her measurement and of the model it-
self in its omissions. The currently dominating models for the analysis of
stock markets are distant inheritors of the generalized probability approach.
In spite of evidence of stable distributions and heteroskedasticity, they were
able to define sophisticated models of analysis and prediction based on these
premises.

In our view, the existence of a large number of degrees of freedom can
be assessed from still another perspective. We assign the variability of these
markets to the functioning of its inner structure, including to the rules that
define the complexity of its dynamics. Consequently, even if they are not
describable under the authority of a deterministic law, some of the systematic
characteristics of these systems may be measured. In this case, we are not
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looking for shocks but for the evolution of the structure itself and, since this
view is also inspired by the evolutionary and institutional reconsideration of
economic theory, we intend to highlight both identifiable factors of mutation
and the role of routines in the functioning of the markets.

One of such institutional factors is the sector itself. Of course, for a
purely stochastic interpretation, the returns of stocks in highly competitive
environment would be expected to evolve under the influence of so numerous
factors that a random trajectory could be supposed to result. We prove that
this is not the case in the periods of turbulence, although in normal periods
the random hypothesis holds satisfactorily. In other words, our thesis is that
the tribes are constituted under threat.

3 The stochastic geometry approach

Unless the proportion of systematic information present in correlations be-
tween stocks in a complex system is relatively small, the corresponding man-
ifold is a not a low-dimensional entity and therefore its understanding is
virtually unreachable. But the evidence of alternate states of apparent ran-
domness and the emergence of structured collective dynamics suggests it may
correspond to a low-dimensional object. The rationale for this intuition is as
follows: considering the existence of competition among multiple agencies,
firms, information and strategies, the response by the agents to the multiple
signals can create an object comparable to that obtained from random pro-
cesses, which is a powerful analogy for such markets except when collective
behavior emerges and dominates its dynamics. If this is the case, the relevant
point is to capture this evolution and we are reduced to an embedding ques-
tion, the definition of the smallest manifold that contains the set of points
describing the market. In that case, its dynamics can be observed as its form
is shaped by the occurrence of bubbles and crises.

The stochastic geometry strategy is simply stated in the following terms.

3.1 The metric and the definition of a distance

From the set of returns of the stocks 1 and their historical data of returns
over the time interval, and using an appropriate metric ([3],[4]), we compute

1N=424 stocks as the population of surviving firms in the S&P500 for January 1998 -
March 2008
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the matrix of distances between the stocks. Considering the returns for each
stock,

r(k) = log(pt(k))− log(pt−1(k)) (1)

a normalized vector

−→ρ (k) =
−→r (k)−〈−→r (k)〉√

n(〈r2(k)〉−〈r(k)〉2)
(2)

is defined, where n is the number of components (number of time labels)
in the vector −→ρ . With this vector the distance between the stocks k and l is
defined by the Euclidian distance of the normalized vectors.

dij =
√

2 (1− Cij) = ‖−→ρ (k)−−→ρ (l)‖ (3)

as proposed in [3] and [4], with Cij being the correlation coefficient of the
returns r(i),r(j).

3.2 Identification of the relevant directions and the in-
dex S

As the distance is properly defined, it is possible to obtain, from the matrix
of distances, the coordinates for the stocks in a Euclidean space of dimension
smaller than N . Then the standard analysis of reduction of the coordinates
is applied to the center of mass and the eigenvectors of the inertial tensor
are computed.

The same technique is applied to surrogate data, namely to data obtained
by independent time permutation for each stock and these eigenvalues are
compared with those obtained in from the data, in order to identify the
directions for which the eigenvalues are significantly different.

For both surrogate and actual data, the sorted eigenvalues, from large
to small, decrease with their order. In the surrogate case, the uniform de-
crease of the eigenvalues shows that the directions are being extracted from
a spherical configuration, corresponding to the randomness of the configu-
ration. The display of a uniform and smooth decrease in the values of the
sorted eigenvalues is characteristic of random cases and is also experimentally
observed when the market space is built from historical data corresponding
to a period of business as usual.
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The procedure is straightforward. After the distances ( dij) are calculated
for the set of N stocks, they are embedded in RD, where D < n, with coor-

dinates −→x (k). The center of mass
−→
R is computed and coordinates reduced

to the center of mass.

−→
R = Σ−→kx(k)

k
(4)

−→y (k) = −→x (k)−−→R (5)

and the inertial tensor

Tij = Σk
−→yi (k)−→y j(k) (6)

is diagonalized to obtain the set of normalized eigenvectors {λi,
−→e i}. The

eigenvectors −→e i define the characteristic directions of the set of stocks. The
characteristic directions correspond to the eigenvalues (λi) that are clearly
different from those obtained from surrogate data. They define a reduced
subspace of dimension f , which carries the systematic information related to
the market correlation structure. In order to improve the decision criterion on
how many eigenvalues are clearly different from those obtained from surrogate
data, a normalized difference τ is computed:

τ(i) = λ(i) + 1− λ′(i) (7)

and the number of significantly different eigenvalues is given by the high-
est value of i to which (τ(i)− τ(i− 1)) > 3(τ(i + 1)− τ(i)).

It was empirically found that markets of different sizes, ranging from 70
to 424 stocks, across different time windows (from one year to 35 years) and
also from different market indexes2 have only six effective dimensions ([5],
[1], [2]).

This corresponds to the identification of empirically constructed variables
that drive the market and, in this framework, the number of surviving eigen-
values is the effective characteristic dimension of this economic space. Taking
the eigenvalues of order smaller or equal than the number of characteristic
dimensions, the difference between eigenvalues from data and those obtained
from surrogate data are computed. The normalized sum of those differences
is the index S, which measures the evolution of the distortion effect in the
shape of the market space.

2stocks from the S&P500 and Dow Jones indexes were considered
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St = Σ6
i=1

λt(i)−λ′t(i)
λ′t(i)

= Σ6
i=1

λt(i)
λ′t(i)

− 1 (8)

where λt(1), λt(2), ..., λt(6) are the six largest eigenvalues of the market
space and λ′t(1), λ′t(2), ..., λ′t(6) are the largest six eigenvalues obtained from
surrogate data. In computing S, at a given time t, both λt and λ′t are obtained
over the same time window and for the same set of stocks.

4 The 1998-2008 History

The proposed approach is applied to the history of 424 stocks of the S&P500
index that includes all the surviving firms for the period under consideration.
We presume this population to be representative of the dynamics of the stock
market and its behavior to be a symptom of the evolution of the economy of
the US.

The changing patterns for this long period are notorious. In Figure 1, we
show the object describing the evolution of the market as replicated in the
three dominant directions, as obtained following the method indicated in the
last section, and the object of a period of business-as-usual is compared to
another formed in a period of crash. The differences are imposing, since in
the latter type of situation the clustering of firms (colored accordingly to the
sector they belong) and the deformation of the market space are obvious.

The object has a characteristic dimension, which allows for a description
projecting its typical shape and the identification of the patterns of its evolu-
tion. The index S is useful for this identification of shapes and patterns and
the results of its computation for the whole period are indicated in Figure 2,
in which the impacts of the shock waves of crashes are evident. Looking for
relevant distortions in the shape of the S&P500 market space through the
last years, we found that amongst the highest values of the index are those
computed for the moments of crash, such as the 27th October 1997 and 11th
September 2001, as expected (Fig. 2). For the recent years, the 2000-2001
crash and the subprime crisis (August 2007 to the Winter 2008) attain the
highest values. These crashes can be classified according to a seismography
measuring their impact and characteristics, as we previously proposed ([2]).

The index provides information on the evolution of the object describ-
ing the dynamics of the markets. It indicates the moments of perturbations,
proving that the dynamics is driven both by shocks and by structural change.
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This is graphically evident in Figure 2 and is confirmed by the rigorous mea-
surement of the distortion of the shape of the object describing the market.
In Figure 2, the seismography of crashes is depicted, registering those crashes
attaining S > 5.

As compared to the previous periods, the results suggest that a new
regime emerges after 1997 and it is a regime of frequent storms. In this sense,
this period combines some of the features of the 1920s and some of those
characteristics of the manias for canals and railways, which accompanied
earlier waves of technical change in the nineteenth-century ([6]).

5 Networks under Threat

The previous results suggest that, as the markets suffer a crash, there is a
distortion in the dominant directions representing its leading variables. But
our data prove as well that such distortion follows a sectoral pattern. Conse-
quently, we discuss in this section the form of collective dynamics emerging
under threat, using a graph representation of the network of stocks.

To characterize the additional information on the structure of the market
spaces, we define the coefficient R, which quantifies the distribution of the
intensity of correlation among stocks present in the S&P500 market space
along the last 10 years.

From the matrix of distances between stocks (equation 1) computed in
the reduced six dimensional space (D6) over a time window of 22 days, we
apply the hierarchical clustering process to construct the minimal spanning
tree (MST) that connects the N securities. Then the boolean graph BD6 is
defined by setting b(i, j) = 1 if d6(i, j) ≤ LD6/2 and b(i, j) = 0 if d6(i, j) >
LD6/2, where LD6 is the smallest threshold distance value d6(i, j) that assures
connectivity of the whole network in the hierarchical clustering process.

Of course, this network behaves very differently when business-as-usual
dominates and whenever a crash occurs, as revealed by Figures 3 to 5.
These figures show, in their first sub-plots the whole network of compa-
nies, while the other seven sub-plots, the sectoral networks of Energy, Indus-
try&Materials, Consumer, Health Care, Finance, Information Technology
and Utilities stocks. The sectoral networks built from August 2000 data
(Fig. 3) are sparse and sparseness predominates even in the cases of Finan-
cial and Energy sectors. Conversely, the majority of the networks for March
2008 exhibits a very high degree of connectivity, which is particularly high
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in the Industry, Utilities, Financial and Energy sectors.
It is also obvious that the nature of the shock and the evolution of the

market produce different sectoral dynamics. As Fig.4 highlights, for the
Winter 2008 crisis, the dominant impacts were in the Financial and Utilities
sectors, whereas for the case of the 2001 crisis the impacts were more intense
on Technologies, Industry and Energy, as Fig.5 shows.

The figure shows the structure of each crisis, as measured according to
the density of relations among sectors; the subprime crisis is concentrated
in the financial and utilites sectors, in contradistinction to other episodes of
turbulence, such as the crash after 9.11, concentrated in the energy and in-
dustry sectors. The profile of each of the crisis can consequently be described
and measured following the indications of this topology.

Improving our investigation on the topological aspects of the stocks be-
haviour, leads to the definition of the coefficient R, which captures the rela-
tive distribution of the distance values below and above the smallest thresh-
old distance value (LD6) that insures connectivity of the whole network of
companies.

Rt =

∑
d6
t (i,j)≤L

D6
d6

t (i,j)
∑

d6
t (i,j)>L

D6
d6

t (i,j)
(9)

Results, as indicated in Fig.6, show that the amount of highly correlated
(short-distant) fluctuations whenever a crash occurs is very large. These
networks display a large amount of distances whose values are below the
endogenous threshold value. This is due to the emergence of a relevant set
of highly correlated fluctuations of the stock returns during market shocks
forcing several weak correlated fluctuations to leave this category. Although
the values of the overall network distances decrease with crashes, the emer-
gence of highly correlated groups of stocks occupying the prominences in the
market distorted shape leads to an increase of the value of the endogenous
threshold LD6 . As a consequence, the number of distances below LD6 tend to
be much higher than the number of those that remain above the endogenous
threshold, leading to a significant increase of the values of R.

During the Subprime Crisis, R reaches 1.4, while the same coefficient
computed for normal periods rests below 0.5 (computing R from surrogate
data yields typical values around 0.025). The evolution of R confirms our
previous results, identifying the major crashes in the period and detecting
how peculiar it is the Winter 2008 crisis. The Subprime Crisis constitutes one
of the highest peaks in the evolution of R for the period under consideration.
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Futhermore, using the LD6/2 threshold to filter the distances, we describe
a network of companies whose stocks are required to be close enough in
order to be connected. The notion of ’state’ is then defined according to
the connectedness of different companies, with those sharing the same state
displaying synchronous behavior.

From the boolean graph BD6 we define s(i) = 1 if ∃j|b(i, j) = 1 and
s(i) = 0 otherwise. In so doing, we are able to identify, along different
periods of observation, those companies that are connected (being closer
than the threshold distance) to at least one other companies in the whole
network of companies.

The space of the synchronous companies in our population is described in
Figures 7 to 9. Stocks are disposed on seven rings, whose color is determined
accordingly to each specific sector (Energy, Industry&Materials, Consumer,
Health Care, Finance, Information Technology and Utilities). Over the rings,
the position of each stock is determined by its order number. However, those
evidencing a non-synchronous (s(i) = 0) evolution are missing, otherwise
(s(i) = 1) they are indicated with colors accordingly to the corresponding
sector. Figure 7 to 9 exhibit monthly observations.

The plots in Fig.7 show that in March 1998, a period of ’business as
usual’ there are few synchronous companies, in almost every sectors, except
in the Energy one. Conversely, in September 2001, almost every sector dis-
plays a highly synchronous set of stocks. The last plot in Figure 8 orders
the synchronous movements evidencing the sectoral dynamics as showed in
March 2008, where synchronization prevails in Industry, Utilities, Financial
and Energy sectors. On the contrary, in August 2000, a period of ’business
as usual’ there are few synchronous companies, in almost every sectors.

The three plots in Fig.9 show the strong synchronization pattern among
stocks in the last 3 months of the Winter 2008 crisis. As they clearly demon-
strate for the case of the subprime crisis, synchronization is related to the
occurrence of market shocks and, furthermore, the dynamics of the stocks of
firms tend to follow sectoral patterns.

Synchronization in the market plays is related to the occurrence of bubbles
and crashes. Synchronization it at the root of the disproportionate impact of
public events relative to their intrinsic information content. This applies to
unanticipated public events but also to pre-scheduled news announcements.
Connectivity patterns as those dictated by sectorial dynamics and the relative
distributions of ’weak’ and ’strong’ connections provide useful insight on
synchronization and market shocks.
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6 Conclusion

The previous results can be interpreted from an evolutionary perspective,
namely the two emergent properties here discussed.

Collective dynamics is the first emergent property in these markets. It is
a property of the structure itself and it allows for the compatibility between
the randomness hypothesis, which provides a fair description of the market in
normal periods, and the highly structured response to the major crashes as
the market space is distorted, which reveals the working of its fundamentals.
Indeed, the market exhibits a large number of degrees of freedom under
normal circumstances but tends to a very reduced number of degrees of
freedom under crises.

Synchronization is the second emergent property of the stock markets.
The results show that synchronization is a rule of behavior and that it follows
sectoral patterns. Therefore, routines apply at the firm level but also as part
of the configuration of the space of the market itself. This is an intuition
going back to the path-breaking work of Nelson and Winter ([7]), who pointed
out the organizational and institutional role of routines. Our method and
results prove the emergence of meta-routines of social behavior of populations
of agents in the speculative market, as a response to signals of turbulence:
the meta-routine organizes the routines of agents and firms. Consequently,
not only the structure of the firm but also the structure of the market itself
generates patterns of behavior, through the formation of expectations and
the choice of actions, that define the collective dynamics.

Competition creates routines that create bonds, and the collective dy-
namics of the reactions of firms and the markets to the crashes is a case in
point. Tribes tend to reunite whenever the bell tolls.
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Figure 1: Market space described along the three dominant directions, for a
period of business-as-usual and for a turbulent period
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Figure 2: The evolution of the index S measuring the evolution of the
S&P500 structure for the surviving firms for 1988-2008 and the Seismog-
raphy of crashes for the same period, considering those attaining S > 5
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Figure 4: The networks of stocks obtained for January 2008, when connec-
tivity inside each sector is the dominant behaviour

Sep2001

28

Energy    

73

Industrial

114

Consumer  

44

Health    

70

Financial 

56

Technology

39

Utilities 

Figure 5: The highly connected (and generalized) networks in September
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Figure 7: The calm period of March 1998 contrasting to September 2001,
when almost every sector displays a highly synchronous set of stocks
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Figure 8: The August 2000 period of ’business as usual’ displays few syn-
chronous companies, in almost every sector contrasting to strong synchro-
nization among stocks in the last month of the Winter 2008 crisis
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Figure 9: Strong synchronization among stocks in the last months of the
Winter 2008 crisis
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