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Empirical literature increasingly supports that both the probability of
default (PD) and the loss given default (LGD) are correlated and driven
by macroeconomic variables. Paradoxically, there has been very little effort
from the theoretical literature to develop credit risk models that would include
this possibility. The goals of this paper are, first, to develop the theoretical,
reduced-form framework needed to handle stochastic correlation of recovery
and intensity, proposing a new class of models; second, to understand under
what conditions would our class of models reflect empirically observed fea-
tures; and, finally, to use a concrete model from our class to study the impact
of this correlation on credit risk term structures. We show that, in our class
of models, it is possible to model directly empirically observed features. For
instance, we can define default intensity and losses given default to be higher
during economic depression periods – the well-known credit risk business
cycle effect. Using the concrete model, we show that in reduced-form models
different assumptions (concerning default intensities, distribution of losses
given default and specifically their correlation) have a significant impact on
the shape of credit spread term structures and consequently on pricing of
credit products as well as credit risk assessment in general. Finally, we pro-
pose a way to calibrate this class of models to market data and illustrate the
technique using our concrete example using US market data on corporate
yields.

Various versions of this work have been presented at, and benefited from comments of the partic-
ipants of, the first AMaMef conference (Antalya, 04/2006), the Credit Risk Workshop for Young
Researchers (London, 05/2006), the Bachelier Finance Society Fourth World Congress (Tokyo,
08/2006) and the 20th Australasian Finance and Banking Conference (Sydney, 12/2007). We have
also benefited from suggestions of two anonymous referees and from discussions with Tomas
Björk, Thorsten Schmidt, Philipp Schonbücher and Lane Hughston. We gratefully acknowledge
financial support from Jan Wallander and Tom Hedelius Foundation. This research was also par-
tially supported by the Austrian Science Foundation project P18022 at the Vienna University of
Technology and by FCT under grant PTDC/MAT/64838/2006.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44N

3



“CreRisk: jcr070726rg” — 2008/6/11 — 14:53 — page 4 — #2

4 R. M. Gaspar and I. Slinko

1 INTRODUCTION

Recent empirical studies show that there is a significant systematic risk compo-
nent in defaultable credit spreads: see Duffee (1998); Jarrow and Turnbull (2000);
Duellmann and Trapp (2000); Frye (2000a, 2003); Elton et al (2001); Bongini
et al (2002); Xie et al (2004); Elton and Gruber (2004); Altman et al (2005);
or Chen (2007). The model underlying the Basel II internal ratings-based capital
calculation (see Basel Committee (2003) and Wilde (2001)) measures credit portfo-
lio losses only, that is, portfolio losses that are due to external influences and hence
cannot be diversified away. This gives us an indication of what the main concerns
are in practice and highlights the need for a realistic model of systematic risk. More-
over, both the probability of default (PD) and the loss given default (LGD) are key
in accessing expected capital losses and measuring the exposure of portfolios of
defaultable instruments to credit risk. It is, therefore, important not to ignore the
interdependence between PD and LGD, since ignoring the interdependence could
lead to underestimation of the true risk borne by portfolio holders. In fact, there has
been increasing support, on the empirical literature, agreeing on two observed facts:
(i) PD and LGD are correlated, and (ii) macroeconomic risks are likely to affect both
these variables. (See Frye (2000b); Hu and Perrandin (2002); Allen and Saunders
(2003); Altman et al (2005); or Giese (2005).) Nonetheless, most of the theoretical
literature considers models in which only the default intensity, or equivalently the
PD, is dependent on a state variable, assuming that the LGD is either fixed or at least
independent of default intensities: see JP Morgan (1997); Wilson (1997); Saunders
(1999); Gordy (2000); or Schönbucher (2001).

The purpose of this study is to present, based on the theoretical flexibility of
doubly stochastic marked point processes (DSMPP), a reduced-form multiple default
family of models that considers the influence of macroeconomic risks on PD
and LGD.

We start by developing a theoretical family of reduced-form models that is con-
sistent with correlated PD and LGD. Theoretically, such a correlation results from
considering that having both PD and LGD dependent upon a common vector1

stochastic state variable X. Since X affects both the jump probability and jump size,
we must use DSMPP. To the best of our knowledge, this is the first time DSMPP is
used in credit risk. DSMPP include as special cases all previously studied processes,
including (the most used) Cox processes.

At a second stage, we investigate the consequences, within our class of models,
of taking into account the empirically observed facts about PD, LGD and their
correlation. We show that models that are consistent with empirically observed facts,
what we call realistic models, should, additionally, satisfy six functional properties.
Given the systematic nature of the empirical facts we deal with, we use, at this stage,
a market index as a proxy for macroeconomic conditions. One of the advantages of

1 Since X is multidimensional, it can, in principle, include various macroeconomic variables and
firm-specific variables. The theoretical results hold for a generic X.
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using such a proxy is that we can easily allow the local volatility of the index to
depend negatively on its level. It is well known that market uncertainty and its level
are negatively correlated.2

To prove relevance of the new proposed class of credit risk models, we must rely
on numerical simulations, as models satisfying our realistic properties are not likely
to be tractable. At this third and final stage of the paper, we aim to show that different
reduced-form models’ assumptions (concerning default intensities, distribution of
losses given default, especially their correlation) have a significant impact on the
shape of credit spread term structures and consequently on pricing of credit products
and credit risk assessment in general. Thus, if empirical evidence tells us that PD
and LGD are correlated, we should use a class of models that allow for these features
since not using such a class might lead to biased assessment of credit risk. We use a
simple model of our class to simulate. Surprisingly enough, even in the context of our
simple model, correlation between PD and LGD seems to be able to capture some
empirically observed properties of the term structure of credit spreads. Clearly, a
more sophisticated model could have been suggested, but, as it turns out, this simple
model suffices to prove the relevance of its class.

The main contributions of this study can be summarized as follows. (1) We
suggest a multiple default reduced-form model in which we use the flexibility of
DSMPP to model the influence of systematic risks on both PD and LGD. (2) We
identify model properties that are consistent with empirically observed qualitative
relationships between macroeconomic conditions and intensity of default, recovery
given default or credit spreads. We claim that these properties should hold in realistic
theoretical models. (3) Using a concrete model, we quantify results and simulate
realistic behaviors of the term structure of credit spreads, showing that the correlation
between PD and LGD (resulting from the influence of the systematic risk) must be
considered. (4) Finally, we show how to calibrate our model to market data.

The rest of the paper is organized as follows. In Section 2, we set up the frame-
work and summarize the main theoretic results concerning the use of DSMPP in
credit risk models. In Section 3, we propose a family of macroeconomic models,
presenting the index dynamics and justifying the assumptions about the influence of
such risks on the intensity and recovery processes using empirical facts. We derive
qualitative results on the influence of the market index on default intensity, recovery
and credit spreads. In Section 4, we present a concrete instance of our class of mod-
els, simulating it to assess the impacts of our qualitative assumptions in terms of
credit spread term structures. We end the section discussing the calibration issues of
models with no closed-form solution and calibrate our concrete model to US market
data. Section 5 concludes the paper, summarizing the main results and suggesting
directions for future research.

2 Periods of recession (low index level) also tend to be periods of high uncertainty (high index
volatility), reflecting some sort of market panic, while periods of economic boom are perceived
as safe periods with low uncertainty.
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2 SETUP AND THEORETIC RESULTS

We consider a financial market living on a filtered probability space (!, F , Q,
(Ft)0≤t≤T ), where Q is the risk-neutral probability measure. The probabil-
ity space carries a multidimensional Wiener process, W , and, in addition,
a DSMPP, µ(dt, dq), on a measurable mark space (E, E) to model the default
events. The filtration (Ft)0≤t≤T is generated by W and µ: Ft = FW

t ∨ Fµ
t . We

assume the existence of a liquid market for default-free zero-coupon bonds for every
possible maturity T . We denote the price at time t of a default-free zero-coupon bond
with maturity T by p(t, T). The instantaneous forward rate with maturity T is denoted
f (t, T), and the default-free short rate is denoted r(t) = f (t, t).

In addition to the risk-free bond market, we consider a defaultable bond market.
We assume that each company on the market issues a continuum of bonds with
maturities T , and we allow for, possibly, multiple defaults. Even though the multi-
ple default assumption is not the most common in credit models, it is popular for
two reasons: first, it represents a better defaults procedure; and, second, at least in
the classic Cox process setup, considering a multiple default model is equivalent
to assuming a recovery of market value in a single default model.3 In this paper,
we choose it for the first reason. Indeed, various events are recognized as default
events, besides bankruptcy. In fact, bankruptcy is only one of the events recognized
as a credit event by the International Swaps and Derivatives Association (ISDA),4

the others being failure to pay (on one or more obligations), restructuring (including
reduction of interest and/or principal, postponement of payment of interest and/or
principal, change of currency, contractual subordination), rating downgrades, repu-
diatium and moratorium. In all other events, a firm continues to operate despite the
fact that its assets will be worth less. This can, directly or indirectly, be interpreted
as a decrease in the face value of outstanding debt and hence be in accordance with
the standard multiple default assumption. Debt holders are likely to accept the rene-
gotiation of their claims (accepting to lose some fraction q of the face value of the
claims) in order to avoid bankruptcy, which is typically costly. Schönbucher (2003)
also defends multiple default models as realistic as they mimic the effect of a rescue
plan as it is described in many bankruptcy codes. Finally, if we would like DSMPP
to be used in top-down models of portfolio credit risk, the multiple default setup is
necessary.5

Next we introduce some notation concerning the defaultable bond market.
Assumptions 2.2 and 2.3 then characterize the default events and the dependence of

3 See Schönbucher (2003) 135–138, for further details on the Cox process case. An interesting
question for future research is to check that this also holds in the more general DSMPP case. Our
conjecture is that it does.
4 The ISDA officially defines what can be considered a financial event related to a legal entity that
triggers specific protection provided by any credit derivative contract.
5 Top-down models of portfolio credit risk directly model the loss process of a porfolio of credits.
Such loss process, naturally, must allow for several defaults. For further details, we refer the reader
to Gieseke (2008).
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both the default intensity and the recovery rate distribution on an abstract stochastic
state variable X.

Definition 2.1 (Basic definitions)

• The loss quota, q, is the fraction by which the promised final payoff of the
defaultable claim is reduced at each time of default.

• The remaining value, after all reductions in the face value of the defaultable
claim due to defaults in the time interval [0, t], is denoted V(t).

• At time t, the price of a defaultable zero-coupon bond with maturity T and
the face value 1 is p̄(t, T). The payoff at time T of the bond is, thus, V(T) ie,
p̄(T , T) = V(T).

• We define the instantaneous defaultable forward rate, f̄ (t, T), simi-
larly to its risk-free equivalent: p̄(t, T) = V(t) exp {−

∫ T
t f̄ (t, s)ds} and

f̄ (t, T) = − ∂

∂T
ln p̄(t, T).

• The defaultable short rate is defined as r̄(t) = f̄ (t, t).
• The short credit spread, s(t), is defined as the difference between the defaultable

and non-defaultable short rates s(t) = r̄(t) − r(t).
• The forward credit spread s(t, T) is defined as the difference between the

defaultable short rate and non-defaultable forward rates, s(t, T) = f̄ (t, T) −
f (t, T).

Assumption 2.2 (State variable) There exist an underlying stochastic state
variable X whose dynamics, under the risk-neutral measure Q, is given by:

dXt = αX(t, Xt)dt + σX(t, Xt)dWt (1)

where X is possibly multidimensional and αX and σX are adapted processes.

Assumption 2.3 (Default events) We assume the following:

1) Default happens at a sequence of the stopping times τ1 < τ2 < · · · , where τi
is the time of the ith jump of a point process, µ.

2) At each default time τi, the loss quota qi is drawn from the mark space E = (0, 1).
3) There is no total loss at default, ie, the loss quota qi < 1 for all i = 1, 2, . . . .
4) Both the arrivals of default times (τi)i≥1 and the distribution of the loss quotas

given default (qi)i≥1 depend upon the stochastic state process X.

Given that at each default time τi, the final claim amount is reduced by a loss quota
qi to (1 − qi) times what it was before, we obtain:

V(t) =
∏

τi≤t

(1 − qi) (2)
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where qi is the stochastic marker to the default time τi. Obviously, in case of no
default on the interval [0, T ], V(t) = 1.

Before we formally define DSMPP, we clarify the filtrations notation.

Definition 2.4 (Filtrations) The filtration generated by W(t), (FW
t )t≥0, is the

background filtration.6 The filtration GW = ∨
t≥0 FW

t contains all future and past
information on the background process W . The full filtration results from combin-
ing (FW

t )t≥0 and the filtration (Fµ
t )t≥0, generated by the marked point process

(MPP) µ, Ft = FW
t ∨ Fµ

t . Finally, GW
t = GW ∨ Fµ

t is the filtration generated by
all the information concerning the background process W and only past information
on the MPP µ.

Although we consider X to be Wiener driven, it is straightforward to generalize its
dynamics to general jump-diffusion processes. Unfortunately, what is not possible
is to make X dependent on the default events themselves, as we need the default
process µ, given the information generated by the state variable, to be a true MPP.
A modeling consequence of this fact is that we cannot take into account possible
feedback effects from default events into X.7 This is a drawback of the reduced-
form approach to credit risk, not of our class of models in particular. Still, at least
when we take the single-firm perspective, it is reasonable to suppose that its default
may be sensitive to macroeconomic conditions but not the reverse. In the multi-firm
setup, caution in the interpretation of results may be required.

Definition 2.5 (DSMPP) We call the marked point process µ̂ an Fµ
t - MPP if

there exists a deterministic measure ν̂ on R+ × E such that:

P
(
µ̂((s, t] × B) = k

∣∣Fµ
s

)
= (ν̂((s, t] × B))k

k! e−ν̂((s,t]×B), a.s., B ∈ E

We call the Marked Point Process µ an GW
t - DSMPP if there exists a GW -measurable

random measure ν on R+ × E such that:

P
(
µ((s, t] × B) = k

∣∣GW
s

)
= (ν((s, t] × B))k

k! e−ν((s,t]×B), a.s., B ∈ E

We note that the previous literature on credit risk have only used Cox processes (also
known as doubly stochastic Poisson process).8 The focus has been on modeling the
jump intensity λ, and recovery has been assumed independent of λ. In factor models,

6 In our setup, all the default-free processes are adapted to
(
FW

t

)
t≥0.

7 In particular, given the credit crisis of 2007, one could argue that the default risk in an economy
can have important feedback effects on its macroeconomy.
8 Recall that a counting process N = (Tn) adapted to right-continuous filtration is a GW

t -
Cox process if there is a GW -measurable random measure ν satisfying P

(
N(s, t] = k

∣∣GW
s

)
=

(ν((s,t]))k

k! e−ν((s,t]), a.s k ∈ N.
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the state variable would influence only λ. As far as we know, this study is the first
using doubly stochastic marked point processes in credit risk. Our goal is to allow
both intensity and recovery to be affected by our state variable X. We, thus, need
to model default events using a GW

t -DSMPP whose compensator depends on the
stochastic state variable X presented in (1). Important results for what follows relate
to the existence and construction of such processes. We start by showing the existence
of DSMPP and then suggest a practical way to construct its compensator. Due to its
rather technical level, we present the proof of the next theorem in the appendix.

Theorem 2.6 (Existence) Assume that a random measure ν on R+ × E admits
the representation Mt(dq, Xt)dt, where Mt(dq, x) is a deterministic measure on E
for any fixed x and t. Let ν̂(dt, dq) = mt(dq)dt be a deterministic compensator for
some MPP µ̂. Assume that:

1) Mt(dq, x) is measurable with respect to GW ; and
2) Mt(dq, x) is absolutely continuous with respect to m(t, dq) on E , ie,

Mt(dq, x) << mt(dq).

Then, there exists a GW
t -DSMPP µ, such that its compensator is of the form:

ν(dt, dq, ω) = ν(dt, dq, Xt) = Mt(dq, Xt)dt, Q − a.s. (3)

Given the existence of DSMPP, we can now focus on the compensator’s construction.
Good credit risk models consistently price credit products that depend only on
default intensity (eg, digital swaps), on recovery given default (eg, recovery swaps)
and on both (eg, credit default swaps). This means that we would like to model the
intensity of default λ(t, Xt) and the instantaneous conditional loss quota distribution
K(t, dq, Xt), separately allowing both these quantities to depend on the state variable
X, and not to model the whole compensator ν(dt, dq, Xt) to start with. Luckily, since
Mt(dq, Xt), the multiplication of the two quantities K(t, dq, Xt) and λ(t, Xt), is a
random measure on R+ ×E, we are always allowed to do so (see, for example, Last
and Brandt (1995) for further details). It, then, follows directly from Theorem 2.6 that
there will always exist a GW

t -DSMPP whose compensator is given by ν(dt, dq, Xt) =
K(t, dq, Xt)λ(t, Xt)dt. Given this, we propose the following construction procedure.

Remark 2.7 (Construction procedure) We construct the DSMPP µ as follows:

1) We specify the Wiener-driven stochastic state variable X .
2) We specify the intensity λ(t, Xt) as a function of the state variable.
3) We specify the instantaneous conditional loss quota distribution as a function

of the state variable K(t, dq, Xt).9

9 In all the practical applications, we suppose that the instantaneous conditional loss quota dis-
tributions K(t, dq, Xt) are absolutely continuous with respect to the Lebesgue measure on E , that
is, we consider conditional loss quota distributions of the form K(t, dq, Xt) = K̃(t, q, Xt)dq, thus
Mt(dq, x) << dq. This is enough to cover all the most common conditional distributions.
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4) Finally, we construct the stochastic compensator ν(dt, dq, Xt) = K(t, dq, Xt)

λ(t, Xt)dt.

We conclude this section stating some general results on credit spreads and comment-
ing on the choice for modeling under the risk-neutral measure Q and its consequences
in terms of the objective probability measure P. The proof of the next proposition
can be found in the appendix.

Proposition 2.8 Given Assumption 2.3 and under the martingale measure Q:

1) The short credit spread, s(t), is always positive, and its functional form is given
by s(t) = λ(t, Xt)qe(t, Xt), where qe(t, Xt) =∫ 1

0 qK(t,dq,Xt) can be interpreted as
the locally expected loss quota (which is positive for q > 0).

2) The forward credit spread s(t, T) takes the form:

s(t, T) = EQ
t [{r(T) + λ(T , XT )qe(T , XT )} e−

∫ T
t {r(s)+λ(s,Xs)qe(s,Xs)}ds]

EQ
t [e−

∫ T
t {r(s)+λ(s,Xs)qe(s,Xs)}ds]

− f (t, T) (4)

3) Defaultable bond prices can be written as p̄(t, T) = V(t)EQ
t [e−

∫ T
t r̄sds].

Remark 2.9 (P considerations) Our setup has been defined under the martingale
measure Q. It is possible to show that if the market price of jump risk φ is a
deterministic function of time then:10

1) The Q and P default intensities relate to each other by λP(t, X) = λ(t, X)

(1 + φ(t)).
2) The Q-loss quota distribution, conditional on default, Kt(dq, X), equals the

conditional on default loss quota distribution under P, KP
t (dq, X).

We see that, in this case, the conditional distribution of the loss quota remains
unchanged under both measures, while the objective intensity can be recovered
from the risk-neutral one, simply multiplying it by a deterministic function of time.
Therefore, assuming that the market price of jump risk is deterministic allows us
to use empirically observed facts, in defining the properties that realistic models
should satisfy.

3 THE MACROECONOMIC RISKS

In this section, we discuss the properties we believe realistic credit risk models
should satisfy. All properties (represented by roman numerals throughout Section 3)
result from empirically observed facts (thus, the use of the adjective “realistic”) and

10 This result is a direct application of the Girsanov Theorem. Upon request, the authors will gladly
provide the proof.
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are justified by economic arguments.11 Since the empirical facts under analysis have
macroeconomic nature, we interpret these properties as systematic properties. It is
widely accepted that the correlation between PD and LGD is mainly a result of the
influence on both variables of systematic factors: see, for instance, Duffee (1998);
Jarrow and Turnbull (2000); Elton et al (2001); Bongini et al (2002); Frye (2003);
Allen and Saunders (2003); Xie et al (2004); Altman et al (2005); or Chen (2007).
The main economic reasoning being that in recessions it is reasonable to expect
more defaults (so higher PD) and thus negative relationship between PD and market
conditions. Moreover, when the entire market is down, the market value of any
firm’s assets should be lower and debt holders should recover less if a default occurs
(so higher LGD), again resulting in a negative relationship between LGD and market
conditions.

In this section we use a market index as a proxy for macroeconomic conditions.
At this stage we decided to reduce the dimension of our general state variable X to
one, which we will denote as I . The main reasons are (1) most empirical studies
our properties relate to rely on single variables or market indexes, (2) we can better
understand the implications of the empirically observed facts in terms of model
properties (how intensity or loss quota distributions should be modeled), and (3) it
also allows us to include additional realism in the dynamics of the index itself.
Some authors take stock market index as a proxy for macroeconomic conditions
(for instance, see Gatfaoui (2006)); others prefer to take prices of important traded
assets (eg, oil prices). Finally, one can also argue that there are macroeconomic
indexes that aggregate the interaction between multiple sources of macroeconomic
factors, such as foreign exchange rates, inflation rates, gross domestic product,
economic sentiment, etc, in one single number. Examples of such indexes are the
Stock and Watson Index and its successor the Chicago Fed National Activity Index
(CFNAI).12 Our market index, I , can be any of these indexes or traded assets as, at
all times, we consider both the case when this is the price of a traded asset and the
case when it is not the price of any traded asset.

We start by modeling the dynamics of our market index I . Market uncertainty and
its level are negatively correlated. Periods of recession (low index level) also tend to
be periods of high uncertainty (high index volatility), reflecting some sort of market
panic, while periods of economic boom are perceived as safe periods and with low
uncertainty. For example, Jiang and Sluis (1995) show that S&P500 has stochastic
volatility. Gaspar (2001) does a comparative study of American and European stock
markets (using the S&P500 and EuroStoxx 50 indexes) and shows that this feature
persists across markets. Selcuk (2005) shows that the innovations to a stock market
index and innovations to volatility are negatively related, especially in emerging

11 The same properties (qualitative relations) hold under P and Q as long as the market price of
jump risk is greater than −1. Recall Remark 2.9.
12 For further information on these indexes we refer to the Chicago FED Web site:
www.chicagofed.org/economic_research_and_data/cfnai.cfm
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markets. To account for this fact, Property (i), we consider a local volatility model
where index volatility is dependent on the index level.

Assumption 3.1 (Market index) Under the martingale measure Q, the market
index, I , satisfies the following stochastic differential equation (SDE):

dIt = ζ(t)Itdt + γ (t, It)ItdW(t) (5)

where γ is a row vector, W is a Q-Wiener process, and we assume that I is not a
price of a traded asset. If I is a price of a traded asset, we replace ζ by the short
rate r.

Furthermore, for each entry γi, the following holds:

∂γi

∂I
(t, I) < 0 (i)

It is also reasonable to assume that firms may have different sensitivities to
the market index. We, thus, introduce a measure of sensitivity to systematic risk, ε,
ε ∈ [0, 1]. We start by noting that if the firm’s financial situation is strong enough,
it should not really matter if the economy is booming or if it is in recession. That
is, firms that are financially solid should be much less (or not at all) sensitive to busi-
ness cycles than those in a less solid financial position. From this point of view,
the parameter ε can also be regarded as a measure of a firm’s credit worthiness.
Crouchy and Mark (2001), Zhou (2001), Barnhill and Maxwell (2002) and Land-
schoot (2004) show that firms with a lower rating are more affected by financial and
macroeconomic news than firms with a higher rating. If this is so, then it makes sense
to include Properties (ii) and (iii). Property (ii) tells us that the default probability of
some firms may be independent of the market situation. Property (iii) says that firms
that are more sensitive to the market (have lower credit worthiness) have higher PD.

The last property of default intensities we consider, Property (iv), simply states
the well-established fact that if companies are sensitive to business cycles, then there
is higher PD during the recession periods (low I) than in booms (high I).

Assumption 3.2 (The default intensity) The intensity is a deterministic function
of (t, I , ε). Furthermore, we have (λ̄ ∈ R+):

λ(t, I , 0) = λ̄ (ii)
∂λ(t, I , ε)

∂ε
> 0 (iii)

∂λ(t, I , ε)
∂I

< 0 (iv)

Concerning the loss quota distribution, we state Property (v): it is more likely for the
loss quota, q, to be below some fixed x when index values are low (low I). Indeed, if
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a firm is in distress and going to restructure its debt during a recession, its assets are
worth less and hence debt holders are more likely to accept a higher loss of their debt
face value. Moreover, bankruptcy costs tend to be higher in periods of recession,
due to the decreased value of firm’s assets, emphasizing this effect.

Formally, this effect can be taken into account using a stochastic dominance
assumption above.

Assumption 3.3 (Loss quota) The conditional distribution of loss quota is a
deterministic function of (t, I). K is a stochastic kernel from R+×R+×R+ → [0, 1]
for any realization of (t, I).

We denote the cumulative distribution function of loss quota conditional on
default as K̃ :

K̃(t, I , x) =
∫ x

0
K(t, I , dq),

∫ 1

0
K(t, I , dq) = 1, ∀t, I

with the following property: K̃(t, I1, x) ≥ K̃(t, I2, x) if I1 ≥ I2, ∀x ∈ R , ie;

∂K̃(t, I , x)
∂I

> 0 (v)

∀t, K̃(t, I , x) stochastically dominates all the conditional distributions I ≤ I.

Integrating by parts, differentiating with respect to I and using (v), we can translate
the above distributional properties in terms of the expected loss quota qe.

Lemma 3.4 (Expected loss) Given Assumption 3.3, the following holds for the
expected value:

qe(t, I) =
∫ 1

0
qK(t, I , dq),

∂qe(t, I)
∂I

< 0 (vi)

An important question is, whether there exists a tractable model within the newly
defined class of models that satisfy all the above mentioned properties? A “tractable”
model allows for explicit (closed-form) expressions for credit spreads. Outside the
class of affine or quadratic credit spread models, it is impossible to find closed-
form solutions.13 Unfortunately, one can easily conclude that no model of affine or
quadratic spreads will verify all the above properties. We note that besides the above
mentioned properties, K , conditional on the state variable information, must be the
distribution of a random variable taking values in (0, 1) and the intensity λ must be
always positive. The following conjecture summarizes the sad news for our class of
realistic models.

13 For further details, see discussion in Gaspar and Schmidt (2007) or Chen, Filipović and
Poor (2004).
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Conjecture 3.5 (Tractability) It is not possible to find a DSMPP model satis-
fying properties (i)–(vi) and that allows to obtain credit spread term structures in
closed form.

Still, there is something one can say about the qualitative impact these properties
have on credit spreads.

Corollary 3.6 (Short spread impact) Given the results in Proposition 2.8,
Assumption 3.2 and Lemma 3.4, the short credit spread can be rewritten as s(t, I , ε) =
λ(t, r, I , ε)qe(t, I). Furthermore we have s(t, I , 0) = λ̄qe(t, I):

∂s(t, I , ε)
∂ε

= ∂λ(t, I , ε)
∂ε

qe(t, I) > 0 and

∂s(t, I , ε)
∂I

= ∂λ(t, I , ε)
∂I

qe(t, I) + λ(t, I , ε)
∂qe(t, I)

∂I
< 0

We note that, given a concrete functional form for the intensity λ and for the loss
quota distribution, the impacts on the short credit spread can be derived explicitly
and quantified. Unfortunately, this is not the situation when dealing with forward
credit spreads. For the forward credit spreads, s(t, T), we obtain expressions in terms
of expectations (see Equation (4)) that must be simulated.

4 A CONCRETE MODEL

In this section, we illustrate the importance of the theoretical results we previously
derived. We use a concrete instance of our class of realistic models and aim to high-
light the importance of considering the dependence between recovery and intensity
of default. We do that by showing that the different model assumptions result in
substantial differences when assessing credit risk. We numerically evaluate the dif-
ferences in short credit spread dynamics, forward credit spread term structures and
prices of defaultable bonds. We choose a simple model to illustrate our claim. Within
the class of realistic DSMPP models of credit risk, we have, of course, other more
sophisticated models that could have been considered. However, for the purpose of
this section, the chosen simple model is sufficient to demonstrate our ideas. More-
over, parsimonious models are appealing since they allow for a better understanding
of what drives the simulation results.

Surprisingly enough, as we will show, the chosen model also replicates reasonably
well some empirical evidence about the term structure of credit spreads and may
help us explaining why implied volatilities from stock market indexes seem to be
reasonable trackers of short credit spreads. This is an interesting by-product of our
analysis.

In our concrete model, we make several simplifying assumptions. We take the
risk-free rate, r, as constant and abstain from the considerations about the term
structure of risk-free interest rates. Although unrealistic, it is not harmful to our goal
of understanding the implications that intensity and recovery assumptions have on
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credit spreads. I is assumed to be the price of a traded asset. To consider a non-
traded asset, we would need further considerations on the market price of index
risk. We also take all functions to be time homogeneous; the extension to non–time
homogeneous functions is straightforward.

Given these simplifications and to have a completely specified model to simulate,
we need to:

• establish the dependence of the volatility of the index γ , on the index level;
• provide the intensity functional form for λ, in terms of (t, I , ε); and
• decide on a distribution for the loss quota, q, for all possible (t, I).

We start by defining a ratio, m, which relates the current value of the index to its
long-run trend value. Let us define:

m(I) = I − Ī
I

(6)

where Ī is the long-run trend value and a priori given.
The ratio m measures, in relative terms, how close to (or far away from) the long

run trend value parameter, I , the current value of index I is. Intuitively, it seems
reasonable to make all our functions dependent on some relative value of the index,
instead of its absolute value. Long-run trend value parameter Ī will be assumed to
grow at the risk-free rate over time.14 We note that the higher the current level of
the index, the higher is m, since ∂m

∂I = Ī
I2 > 0. So, m can be interpreted as a rate

indicating how bullish or how bearish the market may be at every point in time. In
normal markets, we have m = 0; in bull markets, m > 0; in bear markets, m < 0.
A reasonable range for m(I) is the interval [−0.3, +0.3].

4.1 The market index volatility γ

Based on the ratio m, we define the volatility of index, γ (I), in the following way:

γ (I) = γ̄ (1 − m(I))
1
2 ∀I , γ̄ ∈ R+ (7)

Agreeing with Assumption 3.1, the higher the current value of the index, the lower
is the index volatility γ , ∂γ (I)

∂I = 1
2 γ̄ [1 − m(I)]−

1
2

(
− ∂m(I)

∂I

)
< 0, ∀I > 0.

Figure 1 shows us two possible paths for the index process, one assuming γ to
be a constant and the other where the index volatility depends on the index level as
in (7).

14 This is consistent with our simplifying assumption that we are dealing with a price of a traded
asset that, under the risk-neutral measure Q, is supposed to grow at the risk-free rate. One always
needs to be sure that the long-run level is consistent with the index dynamics.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44N

Research Paper www.thejournalofcreditrisk.com



“CreRisk: jcr070726rg” — 2008/6/11 — 14:53 — page 16 — #14

16 R. M. Gaspar and I. Slinko

FIGURE 1 Two paths for the index level and volatility.

The same noise was used for both cases, and we took Ī = 10,000 and I = 10,000. Case 1: constant volatility
γ = 0.2, the index process is the full line. Case 2: stochastic volatility as in (7), the index process is the
dotted line.

4.2 The default intensity λ

Having defined the index volatility, we now define the intensity function:

λ(I , ε) = λ̄ [1 − m(I)]ε for λ̄ ∈ R + and ε ∈ [0, 1] (8)

We note that we can interpret the intensity function as a function of the index level
or, if we prefer, as a function of the index volatility. One can argue that the intensity
should not be affected by index level, but instead by its volatility since it is the
volatility that represents the “risk.”

The definitions in (7) and (8) allow for both interpretations as it holds λ(I , ε) =
λ̄

(
γ (I)
γ̄

)2ε
. As desired, the lower the index, the higher the default intensity:

∂λ

∂I
= λ̄ε (1 − m(I))ε−1

(
−∂m(I)

∂I

)
< 0 or

∂λ

∂I
= ∂λ

∂γ

∂γ

∂I
= λ̄

(
γ (I)
γ̄

)2ε−1 ∂γ

∂I
< 0
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FIGURE 2 (a) γ (I) for different levels of [1 − m] versus naive constant volatility
γ̄ = 0.2. (b) λ(I), for different levels of m(I) and different ε = 0, 1/16, 1/4, 1/2,
λ̄ = 0.05.

Figure 2 shows the functions λ(I) and γ (I) for different values of [1 − m].15

4.3 The loss quota q

Finally, we need to decide on the loss quota distribution. As before, we make
use of the ratio m to define the dependence of loss process distribution on the
market index I . We choose the beta class of distributions.16 Concretely, we consider
q ∼ Beta (2[1 − m(I)], 2) (ie, we take a = 2[1 − m(I)] and b = 2), which is
consistent with the desired properties referred to in Assumption 3.3. Thus:

K̃(q, I) = 1
B(2[1 − m(I)], 2)

∫ q

0
x1−2m(I)(1 − x)dx

From the properties of the beta distribution, we immediately obtain the
expected loss given by:

qe(I) = E[q(I)] = 2[1 − m(I)]
2[1 − m(I)] + 2

and
∂qe(I)

∂I
= ∂qe(I)

∂m
∂m
∂I

= −1

(2 − m(I))2
∂m(I)

∂I
< 0.

15 Since in Figure 2 the x axis refers to [1 − m] (and not m itself), the normal market situation
corresponds to a value of 1, bull market situations to values less than 1 and bear market situations
to values higher than 1.
16 Recall that the beta density function is given by f (x) = 1

B(a,b)
xa−1(1 − x)b−11(0,1)(x) where

a > 0, b > 0 and B(a, b) =
∫ 1

0 xa−1(1 − x)b−1ds (beta function). Useful properties of the beta
distribution are E[X] = a

a+b = µ, Var X = ab
(a+b+1)(a+b)2 and E[(X − µ)r] = B(r+a,b)

B(a,b)
.
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FIGURE 3 (a) Density and (b) cumulative distribution functions of loss quota for
m = −0.3, m = 0, m = +0.3.

Hence, in our concrete model if default occurs exactly at a moment when the index
is at its long-run level, the expected loss quota is qe = 1

2 ; if default occurs instead
when the index level is “high” (m > 0), one expects to recover more, expected loss
quota decreases below 1

2 ; if default occurs when the index level is “low” (m < 0), one
expects to recover less, expected loss quota increases. Figure 3 shows the loss quota
density and its cumulative distribution function for three different values of m.17

As expected in good market conditions, our loss distribution is negatively skewed,
as we expect to loose less, given that default occured. Figure 4(a) shows possible
realizations of the loss quota (drawn from the beta density with the appropriate
mean for each value of m) (stars), the expected loss quota (full line) and the naive
approach of taking q̄ = 1

2 (dotted line). Figure 4(b) shows a scatter plot of λ versus
one possible recovery realization for different levels of the index.

4.4 Simulation results

In simulations, we use the Monte Carlo method with a step size equivalent to one
trading day (250 steps per year) and all simulations concern 5,000 paths. The same
noise matrix is used for all scenarios and cases so that the values obtained can
actually be compared.18 Table 1 reports the reference parameters, while Table 2
characterizes all possible scenarios.

17 Note that for m = −0.3, we get a = 2×1.3 and a positively skewed distribution of losses given
default in bear markets. Likewise for m = +0.3, we obtain a = 2 × 0.7 resulting in negatively
skewed distribution in a bull market. For m = 0 (normal market), we get a = 2 and a symmetric
distribution.
18 As discretization errors would be in the same direction for all scenarios.
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FIGURE 4 (a) Loss quota possible realizations and expected value for different
values of [1 − m]. Dotted line is the naive q = 1

2 . (b) Scatter plot of intensity
versus a recovery realization for different values of m.

TABLE 1 Reference values for the parameters in the model.

Maturities (T ) From days up to 20 years
Risk-free interest rate 5%

m(I)






bull market +0.3
normal market 0
bear market −0.3

Long-run index value 10.000e 0.5×T

Fixed index volatility (γ̄ ) 20%
Fixed intensity value (λ̄) 5%
Fixed recovery value

(
q̄ = 1

2

)
50%

TABLE 2 Basic reference scenarios for simulations.

Scenario Index volatility Intensity Recovery

(1) F F F
(2) S F F
(3) F F S
(4) S F S
(5) F S F
(6) S S F
(7) F S S
(8) S S S

F = Fixed, S = Stochastic.

4.4.1 Differences in the term structure of credit spreads

We start by looking into short spread dynamics. Figure 5 presents three possible
paths for the short spread under each scenario. Obviously, three paths are not rep-
resentative, still we believe the intuition is nice and we chose paths with different
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FIGURE 5 Three possible paths for the short spread, s(t).

(a) The market index decreases over time, leading to an increase of the short spreads;
(b) existence of mixed path; (c) the index value ends up increasing, leading to a reduction in the short spreads.
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characteristics. From the analysis of this figure, we can conclude that allowing for
some stochasticity, either in the intensity process or in the expected loss quota, leads
to similar short spread dynamics and that it is the combined effect that really makes
the difference. In any of the presented paths, if just one of the effects would be con-
sidered, the short spreads do not oscillate more than 1% below or above the naive
2.5%, while for the combined effect, the variation can be as large as 4% (in the case
of path (a)) and quite often above 2%.

An interesting side effect of our concrete model is that when we take the index
volatility to be stochastic and negatively related to the index level, the short spread
dynamics can be tracked quite well by observing the index volatility. See Figure 6
with three possible volatility paths and compare with the short spread evolution in
Figure 5. A natural conjecture follows.

Conjecture 4.1 (Implied volatility as credit spread tracker) Since the (spot)
volatility seems to be a good tracker of the short spread, then implied volatilities
of options with longer maturities may be good trackers of the forward spread term
structure.

This is all due to the negative correlation between the index level and its volatility.
Still, it provides a fundamental reason for using implied volatilities of options on
indexes as predictors of forward credit spread term structures, which seems to be
common practice among traders (who use at-the-money (ATM) volatility term struc-
tures as predictors). Collin-Dufresne et al (2001) also investigated the determinants
of credit spread and showed that credit spreads are mostly driven by a single common
factor and that implied volatilities of index options contain important information
for credit spreads.19

We now focus the analysis on the term structure of (forward) credit spreads. From
Figure 7 we see that when we consider the dependence between PD and LGD and
the negative relation, the index level and volatility – scenario (8), the term structure
seems to converge faster to its long-run level. In fact, for maturities higher than
15 years, the term structure of this scenario is relatively flat. Thus, the forward credit
spreads are most sensitive to the influence of the market index at the relatively shorter
maturities, and around the 15-year maturity, the credit spreads become relatively
flatter and less sensitive to the market index, moving in fact closer to each other.
There is a clear lack, in the existing emprical literature, of studies about the shape
of credit spreads term structures. Furthermore, usually, corporate debt tends to be
of relatively lower matuirties than government debt, making it hard to accurately
estimate credit spreads with maturities higher than 10 years. For both these reasons,

19 Recent papers (see, for example, Cremers, Dreissen and Weinbaum (2004)) start using mea-
sures of volatility and skewness based also on individual stock options to explain credit spreads on
corporate bonds. Implied volatilities of individual options are shown to contain important infor-
mation for credit spreads. They showed that those implied volatilities improve on both implied
volatilities of index options. However, in the suggested framework, we cannot model this feature
since the reduced models do not allow us to model stock and corporate bonds together.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44N

Research Paper www.thejournalofcreditrisk.com



“CreRisk: jcr070726rg” — 2008/6/11 — 14:53 — page 22 — #20

22 R. M. Gaspar and I. Slinko

FIGURE 6 Volatility paths corresponding to the spot spread paths.

it is hard to check whether real-life credit spreads are flat for maturities as big as 15
years. The most relevant finding, however, is that the differences between different
models are substantial at maturities liquidly traded in real life (maturities lower than
10 years) and seem to persist even in the long run. Table 3 presents spot (T = 0)
and forward spreads (all other maturities).

4.4.2 Differences in pricing and survival probabilities

Table 4 reports defaultable (non-zero recovery) bond prices under various scenarios
and market conditions for several maturities. The first point that should be high-
lighted is that even for low maturities, there is a difference in the prices produced
by the naive scenarios (scenarios (1) and (2)), scenarios where either the PD or
LGD is dependent on the index level (scenarios (3),(4),(5),(6)) and scenarios where
we consider the combined effect. For the bull and bear markets, the pricing differ-
ence is clear already at T = 0.1. At five-year maturities the underpricing of the naive
model can be up to 5% in a bull market and up to 10% in a bear market. When we
consider longer horizons, from five to 15 years, in the stochastic volatility scenario,
the survival probability decreases by almost 40% for the bull market and up to 50%
for the bear market. In our opinion, this is a realistic feature of the model, since
at the longer horizons when the market is in recession and firms are known to be
sensitive to the fluctuations of the market, the PD is quite high. Moreover, from
Table 5 it is interesting to note that in a bull market although a stochastic volatility
scenario yields higher survival probabilities at all the maturities, the difference in
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FIGURE 7 Term structure of forward spreads for all scenarios, under three
possible market conditions: (a) bull market, (b) normal market and (c) bear
marker.
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TABLE 3 Credit spreads for different scenarios and market conditions.

T (1)(2) (3) (4) (5) (6) (7) (8)

Bull market
0 2.5 2.174 2.174 2.192 2.192 1.906 1.906
0.5 2.5 2.188 2.185 2.209 2.206 1.945 1.937
1 2.5 2.201 2.196 2.226 2.220 1.983 1.968
2 2.5 2.228 2.219 2.262 2.251 2.063 2.040
5 2.5 2.299 2.275 2.355 2.334 2.264 2.217
7 2.5 2.343 2.317 2.425 2.414 2.412 2.383
10 2.5 2.402 2.363 2.519 2.542 2.592 2.604
15 2.5 2.482 2.430 2.674 2.769 2.855 2.898
20 2.5 2.554 2.467 2.786 2.844 2.992 2.886

Normal market
0 2.5 2.5 2.5 2.5 2.5 2.5 2.5
0.5 2.5 2.512 2.513 2.519 2.519 2.544 2.545
1 2.5 2.525 2.525 2.538 2.539 2.587 2.589
2 2.5 2.548 2.549 2.576 2.582 2.674 2.688
5 2.5 2.612 2.615 2.684 2.718 2.908 2.977
7 2.5 2.650 2.660 2.763 2.853 3.073 3.238
10 2.5 2.701 2.705 2.867 3.024 3.264 3.493
15 2.5 2.770 2.764 3.036 3.300 3.525 3.764
20 2.5 2.835 2.799 3.155 3.383 3.643 3.709

Bear market
0 2.5 2.941 2.941 2.988 2.988 3.516 3.516
0.5 2.5 2.951 2.955 3.010 3.020 3.567 3.590
1 2.5 2.961 2.969 3.032 3.053 3.618 3.667
2 2.5 2.980 2.994 3.074 3.117 3.712 3.808
5 2.5 3.030 3.069 3.209 3.429 4.001 4.428
7 2.5 3.058 3.107 3.298 3.612 4.174 4.735
10 2.5 3.099 3.145 3.417 3.832 4.372 4.976
15 2.5 3.151 3.181 3.605 4.110 4.607 5.089
20 2.5 3.207 3.210 3.730 4.258 4.678 4.986

Short credit spreads T = 0, forward credit spreads for all other maturities. All values are in percentages.

survival probabilities is much smaller at the higher maturities. In a bear market, on
the other hand, survival probabilities are lower for the stochastic volatility case, and
the difference in survival probabilities between the stochastic volatility and naive
scenarios is more pronounced. In contrast to the bull market, the difference increases
by approximately 5% when the investment horizon is extended from five to 15 years.

4.4.3 How to account for different ratings

We now take a closer look at the parameter ε, which we recall (Assumption 3.2) is a
measure of the sensitivity of a firm’s PD to the market situation. The intuition comes
from the fact that the PD of firms with high credit worthiness should depend very
little (or not depend at all) on the market oscillation, while less credit worthy firms are
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TABLE 4 Prices of zero-coupon defaultable bonds (100 nominal value) for different
scenarios and market conditions.

T (1)(2) (3) (4) (5) (6) (7) (8)

Bull market
0.1 99.25 99.28 99.28 99.28 99.28 99.30 99.30
0.5 96.31 96.47 96.47 96.46 96.46 96.59 96.59
1 92.77 93.06 93.06 93.04 93.04 93.28 93.29
2 86.06 86.58 86.59 86.54 86.55 86.96 86.98
5 68.72 69.63 69.66 69.49 69.53 70.13 70.21
7 59.13 60.12 60.19 59.93 59.98 60.54 60.66
10 47.22 48.19 48.29 47.89 47.92 48.32 48.43
15 32.45 33.21 33.36 32.75 32.68 32.83 32.85
20 22.31 22.81 22.99 22.26 22.15 22.09 22.17

Normal market
0.1 99.24 99.24 99.24 99.24 99.24 99.24 99.24
0.5 96.31 96.31 96.31 96.31 96.31 96.30 96.30
1 92.77 92.75 92.75 92.75 92.75 92.72 92.72
2 86.06 86.02 86.02 86.00 85.99 85.91 85.90
5 68.72 68.52 68.52 68.40 68.36 68.00 67.92
7 59.13 58.80 58.78 58.58 58.46 57.91 57.68
10 47.21 46.70 46.68 46.33 46.05 45.31 44.83
15 32.45 31.72 31.70 31.13 30.60 29.76 29.07
20 22.30 21.47 21.48 20.77 20.20 19.38 18.82

Bear market
0.1 99.24 99.20 99.20 99.19 99.19 99.14 99.14
0.5 96.31 96.09 96.09 96.07 96.06 95.81 95.80
1 92.76 92.34 92.34 92.29 92.28 91.78 91.76
2 86.06 85.27 85.26 85.15 85.11 84.16 84.07
5 68.72 67.06 67.00 66.70 66.44 64.52 64.00
7 59.11 57.07 56.96 56.50 55.97 53.73 52.74
10 47.20 44.78 44.63 43.97 43.05 40.67 39.18
15 32.44 29.83 29.67 28.72 27.48 25.29 23.69
20 22.30 19.82 19.69 18.62 17.41 15.61 14.38

more sensitive to business cycles. In this sense, different ε parameters could represent
the term structure of firms with different credit ratings. In the following, we consider
three different values for ε: high, ε = 1/2; medium ε = 1/4; and low, ε = 1/16.20

Table 6 and Figure 8 show the credit spread simulation results for the different ε

values under normal market conditions and up to a five-year horizon. The key feature
is that the term structure of less sensitive (higher ratings) firms have a flatter slope.
This is particularly obvious for scenarios (7) and (8) when the index influences both
PD and LGD and less obvious when it affects only one of them. Thus, in practice, it is
important to take into account the correlation with the market index, especially when

20 The case of total insensitivity, ε = 0, is always considered since in scenarios (1),(2),(3) and (4),
λ(I , ε) = λ̄.
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TABLE 5 Survival probabilities up to time T .

Bull market Normal market Bear market

T (1)(2)(3)(4) (5)(7) (6)(8) (1)(2)(3)(4) (5)(7) (6)(8) (1)(2)(3)(4) (5)(7) (6)(8)
0.1 99.6 99.6 99.6 99.5 99.5 99.5 99.5 99.4 99.4
0.5 97.5 97.8 97.8 97.5 97.5 97.5 97.5 97.0 97.0
1 95.1 95.7 95.7 95.1 95.1 95.1 95.1 94.1 94.1
2 90.5 91.5 91.5 90.5 90.3 90.3 90.5 88.6 88.5
5 77.9 79.6 79.7 77.9 77.2 77.1 77.9 73.4 72.9
7 70.4 72.4 72.5 70.4 69.2 68.9 70.4 64.4 63.3
10 60.6 62.5 62.6 60.6 58.5 57.9 60.6 52.8 51.0
15 47.2 48.4 48.4 47.2 43.9 42.9 47.2 37.5 35.2
20 36.8 37.2 37.3 36.8 32.6 31.7 36.8 26.6 24.4

All values are percentages.

TABLE 6 Credit spreads for all scenarios and three different values of ε.

T (1)(2) (3) (4) (5) (6) (7) (8)

High
(
ε = 1

2

)

0 2.5 2.5 2.5 2.5 2.5 2.5 2.5
0.5 2.5 2.512 2.513 2.519 2.519 2.544 2.545
1 2.5 2.525 2.525 2.538 2.539 2.587 2.589
2 2.5 2.548 2.549 2.576 2.582 2.674 2.688
5 2.5 2.612 2.615 2.684 2.718 2.908 2.977

Medium
(
ε = 1

4

)

0 2.5 2.5 2.5 2.5 2.5 2.5 2.5
0.5 2.5 2.512 2.513 2.508 2.508 2.527 2.527
1 2.5 2.525 2.525 2.516 2.516 2.553 2.554
2 2.5 2.548 2.549 2.531 2.534 2.604 2.610
5 2.5 2.612 2.615 2.577 2.588 2.743 2.770

Low
(
ε = 1

16

)

0 2.5 2.5 2.5 2.5 2.5 2.5 2.5
0.5 2.5 2.512 2.513 2.502 2.502 2.516 2.516
1 2.5 2.525 2.525 2.503 2.503 2.531 2.531
2 2.5 2.548 2.549 2.507 2.507 2.561 2.563
5 2.5 2.612 2.615 2.517 2.518 2.642 2.649

All values are percentages.

considering a portfolio of securities with low credit ratings. The effect will be even
more pronounced when we have stochastic index volatility. As already mentioned,
the emprical literature concerning the shape of credit spreads term structure is scarce.
Still, our findings seem to be in accordance with those of Krishnan et al (2006) and
He et al (2007).
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FIGURE 8 Term structure of forward spreads for all scenarios, under normal mar-
ket conditions, and for three different values of ε: (a) high, ε = 1

2 ; (b) medium,
ε = 1

4 ; (c) and low ε = 1
16 .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44N

Research Paper www.thejournalofcreditrisk.com



“CreRisk: jcr070726rg” — 2008/6/11 — 14:53 — page 28 — #26

28 R. M. Gaspar and I. Slinko

4.5 Calibration of the model to market data

Lack of closed-form solutions complicates the calibration procedure. In this section,
we present a possible solution to overcome this difficulty, using a perturbed class of
models (that include our concrete model as a special case) and a first-order approxi-
mation to the yield spreads implied by that class of models. We chose this approach
as credit yields are nothing more than averages of forward credit spreads and tend to
be rather well behaved, hence, suitable to approximation methods. Our data consists
of daily data from August 2004 to March 2007, on benchmark yields of Moody’s
Aaa and Bbb-rated long-term US corporate bonds. We use long-term US government
yields as a proxy to the risk-free short rate and S&P500 as our market index.

Concretely, we specify the index volatility, intensity and the expected loss quota
as follows:

γ (I) = γ̄ (1 − km(I))
1
2 ; λ(m(I)) = λ̄ {1 − km(I)}ε ;

qe(m(I)) = a(1 − km(I))
a(1 − km(I)) + b

Note that we still assume a beta distribution for the distribution of losses but we
generalize its parameters to a(1 − km(I)) and b. Also if k = 0 the model reduces
to the naive model, with constant intensity λ̄ and constant expected loss quota
qe = a

a+b ; if k = 1, it reduces to our concrete model. So, we are actually calibrating
a wider class than our concrete model to market data.

Since the data comes in yields, we note that using the DSMPP approach, the
yield spread between the defaultable and non-defaultable bonds can be computed
as follows:

ȳ(t, T) − y(t, T) = − 1
T − t

∫ T

t
s(t, u, k)du (9)

with s(t, T , k) as in (4) but with the extra perturbation parameter k.
In order to be able to calibrate the perturbed class of models to the observed credit

yield spreads, we then do a first-order Taylor approximation of s(t, T , k) around the
value k = 0. We consider the perturbed expressions for the index volatility, intensity
and expected loss quota, the m ratio definition in (6) and the market index dynamics
in (5). Then, the first-order approximation to the credit yield spread as defined in
(9) is given by:

ȳ(t, T) − y(t, T) ≈ − 1
T − t

∫ T

t

{
s(t, u, 0) + ∂s(t, u, 0)

∂k
k
}

du

≈ λ̄a
a + b

+ λ̄a
(1 + ε)(a + b) − a

(a + b)2 k−

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44N

The Journal of Credit Risk Volume 4/Number 2, Summer 2008



“CreRisk: jcr070726rg” — 2008/6/11 — 14:53 — page 29 — #27

On recovery and intensity’s correlation 29

− λ̄a
(a + b)2

(1 + ε)(a + b) − a
T − t

1
γ̄ 2

2 − r
×

×




e
(T−t)

(
γ̄ 2
2 −r

)

− 1




 (1 − m(It)) k (10)

Given (10), we compute model-consistent time series of yields for corporate bonds
and find the set of parameters that minimizes the difference (in the least-square
sense) to the observed term structure. Table 7 presents the estimation results. Figure 9
shows the estimated loss quota density for three different values of m: m = +0.3
representing a bull market, m = 0 for the case where the market is at its long run
and m = −0.3 representing a bear market.

TABLE 7 Least-square estimates of the model parameters (standard deviations in
brackets).

Default intensity λ̄ 0.0281 (0.0104)
Sensitivity εAaa 0.0737 (1.0555)
Sensitivity εBbb 0.9001 (3.7663)
Volatility of index γ̄ 0.35 (0.0017)
Beta-distribution parameter a 4.9698 (0.2631)
Beta-distribution parameter b 11.595 (0.2286)
Perturbation parameter k 0.6260 (0.0596)

FIGURE 9 Estimated beta distribution for loss quotas
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We would like to finish this section by noting that for different data sets, other
methods may be more appropriate. A recent promising bootstrapping method has
been proposed by Das and Hanouna (2007). The authors use credit default swap
(CDS) spreads data and apply their ideas to fixed recovery models and to the classical
Merton (1974) model; their method could also be applied to our model. In fact, the
only requirement is that it must be possible to write the expected loss quota as a
deterministic function of the intensity and model parameters. This is clearly the case,
for instance, for our generalized concrete model. We get qe(λ(t, It); a, b, ε, λ̄) =
1 − b

[
a

(
λ(t,It)

λ̄

)1/ε
+ b

]−1

.

5 CONCLUSIONS AND FUTURE RESEARCH

We introduce DSMPP to credit risk modeling and propose a class of realistic reduced-
form models, in which both the PD and LGD depend on a macroeconomic index.
We explain the economics behind the fact that during recessions both the PD and the
LGD increase (the reverse happens during economic booms) and relate empirical
evidence to functional properties of intensity and loss quota distribution. Finally, we
discuss the (in)existence of tractable models that would take into account all these
desirable properties.

We then use a concrete (simple) example from the class of suggested models
and use simulations to compute survival probabilities, defaultable bond prices and
forward spread term structures and show that allowing PD and LGD to depend on the
same macroeconomic factors may help explain some empirically observed features.
As a by-product of our analysis, we found that our concrete model is consistent with
market (spot) volatility, tracking the short credit spreads, suggesting that the term
structure of ATM-implied volatilities of index options may do the same for forward
credit spreads. Given the simplicity of the proposed concrete model, we found the
results to be encouraging. We, therefore, ended up the simulation section suggesting
a way to calibrate, and actually calibrating (to US market data), our concrete model.
Above all, during our simulations, we clearly showed that different assumptions
about the PD, LGD and their correlation have significant impacts on the shape and
dynamics of the credit spread term structure, survival probabilities and credit risk
assessment in general.

In terms of future research, since there seems to be no hope for closed-form
solutions within our class of realistic DSMPP credit models (perhaps this is the
right price to pay for taking into account so many empirical observations) we
suggest that new models should be analyzed where both the intensity and the
distribution of the loss quota should be modeled as realistically as possible
(this may involve different functional forms and/or a different market price of
jump risk assumption). Also, empirical studies of the credit spreads term struc-
ture shapes observed in the market can help define such functional forms. One
should also have a careful look at whether spot or implied volatilities from mar-
ket indexes are indeed good trackers of credit spread term structure. Finally,
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another obvious direction is to extend the use of DSMPP to the modeling of
credit portfolio products. For portfolio credit risk, the relation between PD and
LGD is likely to be even more important than for models intended to price instru-
ments issued by a single firm (firm-level models). The fact that portfolio losses
depend upon both quantities and the fact that the periods when default is more
likely to happen may also be the periods when recovery is lower suggest cau-
tion when using naive models to establish bank reserves and related precautionary
measures.

APPENDIX A

Proof of Theorem 2.6 We fix (!, F , P, (Ft)0≤t≤T ) and an MPP, µ̂, with a
compensator given by ν̂(dt, dq) = mt(dq)dt. As before, GW

t = GW ∨ Fµ
t .

Since Mt(x, dq) is absolutely continuous with respect to mt(dq) on E , according
to the Radon-Nikodym Theorem, for every t there exists a E × GW -measurable
non-negative function ϕt(q, x), ϕ : E × R+ → R+, such that:

M(t, Ax) =
∫

A
ϕ(t, q, x)m(t, dq), for all A ∈ E or

M(t, dq, x) = ϕ(t, q, x)m(t, dq)

We define the process Lt as:

{
dLt = Lt−

∫
E {ϕ(t, q, Xt) − 1} {µ̂(dt, dq) − mt(dq)dt}

L0 = 1

We notice that ϕ(t, q, Xt) ∈ GW
0 . Define the new measure on GW

t , 0 ≤ t ≤ T , as
dQ = LtdP. According to the Girsanov transformation, the Q-compensator of the
new process is exactly:

ν(dt, dq) = ν̂(dt, dq)(1 + ϕt(q, Xt) − 1)

= ϕt(q, Xt)mt(dq)dt = Mt(dq, Xt)dt

First, we would like to show that the Q-distribution of ν is the same as the P-
distribution. We note that GW

0 = GW and that dQ
dP

∣∣
GW

0
= L0 = 1, thus, P = Q

on GW
0 .

Second, we would like to show that P(µ((s, t] × B) = k
∣∣GW

s ) =
(ν((s,t]×B))k

k! e−ν((s,t]×B), a.s., for B ∈ E. We prove it using characteristic functions.
Define the stochastic process Yt =

∫ t
0

∫
E qµ̂(ds, dq). Changing the measure, we

obtain that EQ[eiuYt |GW
0 ] = EP[LteiuYtGW

0 ].
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Define Zt = LteiuYt . Then the dynamics of Zt is:

dZt =Lt

∫

E
{eiu(Yt−+q)− eiuYt−}µ(dt, dq)+ Lt−eiuYt

∫

E
(ϕ(t, q, Xt)− 1){µ̂(dt, dq)}

− mt(dq)dt +
∫

E
Lt−(ϕ(t, q, Xt) − 1){eiu(Yt−+q) − eiuYt−}µ̂(dt, dq)

=
∫

E
Zt−ϕ(t, q, Xt)mt(dq)(eiuq − 1)dt +

∫

E
Zt−(eiuq − 1)ϕ(t, q, Xt)µ̃(dt, dq)

+
∫

E
Zt−(ϕ(t, q, Xt) − 1)µ̃(dt, dq)

where µ̃(dt, dq) = µ̂(dt, dq) − mt(dq). We notice also that Z0 = 1. Then:

Zt = 1 +
∫ t

0

∫

E
Zs−ϕ(s, q, Xs)mt(dq)(eiuq − 1)ds +

∫ t

0
· · · µ̃(ds, dq)

= 1 +
∫ t

0

∫

E
Zs−(eiuq − 1)Ms(dq, Xs)ds +

∫ t

0
· · · µ̃(ds, dq)

Denoting ξt = EP[ZtGW
0 ], then ξt = 1 +

∫ t
0

∫
E ξs(eiuq − 1)Ms(dq, Xs)ds. Since

ξt does not depend on q and Ms(dq, Xs) is GW
0 -measurable, we have ξt =

e
∫ t

0
∫

E(eiuq−1)Ms(dq,Xs)ds.
Note that ν(dt, dq, Xt) = Mt(dq, Xt)dt is GW measurable. The final result

follows from the fact that the characteristic function of the process Ȳt =∫ t
0

∫
E qµ̄(ds, dq), where µ̄ is an MPP with compensator ν̄(t, dq), is given by

E[eiuȲt ] = exp{
∫ t

0

∫
E(eiuq − 1)ν̄(s, dq)}.

Lemma 1 Consider a T-defaultable claim X . For the purpose of computing expecta-
tions, and in particular its price at time t ≤ T, EQ

t [e
∫ T

t rsdsV(T)X ], it is equivalent
to use the following two dynamics for the remaining value process:

dV(t)
V(t−)

= −
∫ 1

0
qµ(dt, dq), V(t) = v (11)

dV(t)
V(t−)

= −qe(t−, Xt−)dNt , V(t) = v (12)

where µ is a DSMPP with compensator ν(t, Xt) = λ(t, Xt)K(t, dq, Xt)dt, N is a Cox
process with intensity λ(t, Xt), and we define qe(t, Xt) =

∫ 1
0 K(t, dq, Xt).

Proof Using the V dynamics in (11) we get:

EQ[e−
∫ T

t rsdsV(T)X |Ft]

= V(t)EQ[e−
∫ T

t rsdsX |Ft] − EQ
[

e−
∫ T

t rsds
∫ T

t

∫ 1

0
qVs−µ(dq, ds)X

∣∣∣∣Ft

]
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= V(t)π(t, X ) − EQ
[

EQ
[

e−
∫ T

t rsds
∫ T

t

∫ 1

0
qVs−µ(dq, ds)X

∣∣∣∣G
W
t

]∣∣∣∣Ft

]

= V(t)π(t, X ) − EQ
[

e−
∫ T

t rsds
∫ T

t
Vs−

{∫ 1

0
qK(s, dq, Xs)

}
λ(s, Xs)dsX

∣∣∣∣Ft

]

= V(t)π(t, X ) − EQ
[

e−
∫ T

t rsds
∫ T

t
Vs−qe(s, Xs)λ(s, Xs)dsX

∣∣∣∣Ft

]

Using the V dynamics in (12) we get:

EQ[e−
∫ T

t rsdsV(T)X |Ft]

= V(t)EQ[e−
∫ T

t rsdsX |Ft] − EQ
[

e−
∫ T

t rsds
∫ T

t
Vs−qe(s, Xs)dN(s)X

∣∣∣∣Ft

]

= V(t)π(t, X ) − EQ
[

EQ
[

e−
∫ T

t rsds
∫ T

t
Vs−qe(s, Xs)dN(s)X

∣∣∣∣G
W
t

]∣∣∣∣Ft

]

= V(t)π(t, X ) − EQ
[

e−
∫ T

t rsdsEQ
[∫ T

t
Vs−qe(s, Xs)dN(s)X

∣∣∣∣G
W
t

]∣∣∣∣Ft

]

= V(t)π(t, X ) − EQ
[

e−
∫ T

t rsds
∫ T

t
Vs−qe(s, Xs)λ(s, Xs)dsX

∣∣∣∣Ft

]

The results follow from comparing the final expressions on both cases.

Proof of Proposition 2.8 The time t price of the defaultable zero-coupon bond
with maturity T is equal to p̄(t, T) = EQ

t [e−
∫ T

t rsdsV(T)Ft], where V(T) is the
residual of the face value after multiple defaults up to time T .

Making use of Lemma Appendix A1, instead of dV(t)
V(t−) = −

∫ 1
0 qµ(dt, dq)

with our DSMPP µ (these dynamics follow directly from (2)), we use dV(t)
V(t−) =

−qe(t−, Xt−)dNt , where N is the Cox process with intensity λ(t, Xt).
For every fixed t, define Z(u) as follows: Z(u) = e

∫ u
t qe(s,Xs)λ(s,Xs)dsV(u). We

note, then, that the dynamics of Z(u) take the form:

dZ(u) = −Zu−qe(u−, Xu−) {dNu − λ(u, Xu)du} , u ≥ t, t-fixed

and Z(u) is a Q-martingale conditional on the filtration FW
t . Thus, EQ[Z(T)|FW

t ] =
Z(t).

The price of a defaultable bond then can be found as:

p̄(t, T) = EQ[e−
∫ T

t rsdsV(T)|Ft] = EQ[e−
∫ T

t rsdse−
∫ T

t qe(s,Xs)λ(s,Xs)dsZ(T)|Ft]

= EQ[EQ[e−
∫ T

t rsdse−
∫ T

t qe(s,Xs)λ(s,Xs)dsZ(T)|GW
t ]|Ft]

= EQ[e−
∫ T

t rsdse−
∫ T

t qe(s,Xs)λ(s,Xs)dsEQ[Z(T)|GW
t ]|Ft]
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= EQ[e−
∫ T

t rsdse−
∫ T

t qe(s,Xs)λ(s,Xs)dsZ(t)|Ft]

= V(t)EQ[e−
∫ T

t {r(s)+qe(s,Xs)λ(s,Xs)}ds|Ft]

Using the basic relation between defaultable bond prices and defaultable forward
rates (see Definition 2.1), we get:

f̄ (t, T) = EQ
t [{r(T) + λ(T , XT )qe(T , XT )} e−

∫ T
t {r(s)+λ(s,Xs)qe(s,Xs)}ds]

EQ
t [e−

∫ T
t {r(s)+λ(s,Xs)qe(s,Xs)}ds]

Finally using f̄ (t, t) = r̄(t) in the above expression, we obtain r̄(t, rt , Xt) = r(t) +
qe(t, Xt)λ(t, Xt).

The result follow from s(t) = r̄(t) − r(t) and s(t, T) = f̄ (t, T) − f (t, T).
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Chen, L., Filipović, D., and Poor, H. V. (2004). Quadratic term structure models for risk-free
and defaultable rates. Mathematical Finance 14(4), 515–536.

Collin-Dufresne, P., Goldstein, R. S., and Martin, J. S. (2001). Individual stock-option prices
and credit spreads. Journal of Finance 56(6), 2177–2207.

Cremers, M., Dreissen, J., and Weinbaum, D. (2004). The determinants of credit spread
changes. Working Paper.

Crouchy, M. D. G., and Mark, R. (2001). Prototype risk rating system. Journal of Banking
and Finance 25(1), 47–95.

Das, S., and Hanouna, P. (2007). Implied recovery. Working Paper.

Duffee, G. (1998). The relation between treasury yields and corporate bond yield spreads.
Journal of Finance 53, 2225–2241.

Duellmann, K., and Trapp, M. (2000). Systematic risk in recovery rates: an empirical anal-
ysis of US corporate credit exposures. Discussion Paper Series 2, Banking and Financial
Supervision No. 02/2004.

Elton, E., and Gruber, M. J. (2004). Factors affecting the valuation of corporate bonds.
Journal of Business and Finance 28(11), 31–53.

Elton, E. J., Gruber, M., Agrawal, D., and Mann, C. (2001). Explaining the rate spread on
coprorate bonds. Journal of Finance LVI(1), 247–278.

Frye, J. (2000a). Collateral damage. Risk 13(4), 91–94.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44N

The Journal of Credit Risk Volume 4/Number 2, Summer 2008



“CreRisk: jcr070726rg” — 2008/6/11 — 14:53 — page 35 — #33

On recovery and intensity’s correlation 35

Frye, J. (2000b). Depressing recoveries. Risk Magazine, November, 108–111.

Frye, J. (2003). A false sense of security. Risk 16(8), 63–67.

Gaspar, R. M. (2001). Sobre o efeito da correlação entre rendibilidade e volatilidade do activo
subjacente na valorização de opções. Serie Moderna Finança no. 25, Euronext.

Gaspar, R. M., and Schmidt, T. (2007). Term structure models with shot-noise effects.
Advanced Working Paper Series N.3, ISEG, Technical University of Lisbon.

Gatfaoui, H. (2006). Credit risk and market risk: analyzing US credit spreads. Working Paper.

Giese, G. (2005). The impact of PD/LGD correlations on credit risk capital. Risk Magazine 8(4),
79–84.

Gieseke, K. (2008). Portfolio credit: top down vs. bottom up approaches. Frontiers in
Quantitative Finance: Credit Risk and Volatility Modeling, Cont. R. (ed.). Wiley, Chichester.

Gordy, M. (2000). A comparative anatomy of credit risk models. Journal of Banking and
Finance 24, 119–149.

He, J., Hu, W., and Lang, L. (2007). Credit spread curves and credit ratings. Working Paper.

Hu, Y., and Perrandin, W. (2002). The dependence of recovery rates and default. Birbeck
College and Bank of England Working Paper.

Jarrow, R., and Turnbull, S. (2000). The intersection of market and credit risk. Journal of
Banking and Finance 24, 271–299.

Jiang, G., and Sluis, P. (1995). Index option pricing models with stochastic volatility and
stochastic interest rates. Review of Finance 3, 273–310.

JP Morgan. (1997). Creditmetrics. Technical Document.

Krishnan, C., Ritchken, R., and Thomson, J. (2006). On credit spread slopes and predicting
bank risk. Journal of Money, Credit & Banking 38(6), 1545–1574.

Landschoot, A. (2004). Determinants of euro term structure of credit spreads. European
Central Bank Working Paper Series, No. 397.

Last, G., and Brandt, A. (1995). Probability and Its Applications: Marked Point Processes on
the Real Line. Springer Verlag, New York.

Merton, R. (1974). On the pricing of corporate debt: the risk structure of interest rates.
Journal of Finance 29, 449–470.

Saunders, A. (1999). Credit Risk Measurement. John Wiley & Sons.

Schönbucher, P. (2001). Factors models: portfolio credit risk when defaults are correlated.
Journal of Risk Finance 3(1), 31–53.

Schönbucher, P. (2003). Credit Derivatives Pricing Models: Models, Pricing and Implementa-
tion. John Wiley & Sons, New York.

Selcuk, F. (2005). Asymmetric stochastic volatility models in emerging stock markets. Applied
Financial Economics 15, 867–874.

Wilde, T. (2001). IRB approach explained. Risk 14(5), 87–90.

Wilson, T. (1997). Portfolio credit risk. Risk 10(9–10), 111–117, 56–61.

Xie, Y., Wu, C., and J. Shi. (2004). Do macroeconomic variables matter for the pricing of
default risk? Working Paper.

Zhou, C. (2001). An analysis of default correlations and multiple defaults. The Review of
Financial Studies 555–576.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44N

Research Paper www.thejournalofcreditrisk.com



“CreRisk: jcr070726rg” — 2008/6/11 — 14:53 — page 36 — #34


