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Abstract

The paper studies structural credit risk models with incomplete information of the

asset value. It is shown that the pricing of typical corporate securities such as equity,

corporate bonds or CDSs leads to a nonlinear filtering problem. This problem cannot be

tackled with standard techniques as the default time does not have an intensity under full

information. We therefore transform the problem to a standard filtering problem for a

stopped diffusion process. This problem is analyzed via SPDE results from the filtering

literature. In particular we are able to characterize the default intensity under incomplete

information in terms of the conditional density of the asset value process. Moreover, we

give an explicit description of the dynamics of corporate security prices. Finally, we explain

how the model can be applied to the pricing of bond and equity options and we present

results from a number of numerical experiments.

Keywords. Structural credit risk models, incomplete information, nonlinear filtering

1 Introduction

Structural credit risk models and in particular the first-passage-time models studied for in-

stance by Black and Cox (1976) or Leland (1994) are widely used in the analysis of defaultable

corporate securities. In these models a firm defaults if a random process V representing the

firm’s asset value hits some barrier K that is often interpreted as value of the firm’s liabili-

ties. First-passage-time models offer an intuitive economic interpretation of the default event.

However, in the practical application of these models a number of difficulties arise: To begin

with, it might be difficult for investors in secondary markets to assess precisely the value of the

firm’s assets. Moreover, for tractability reasons V is frequently modelled as a diffusion process.

In that case the default time τ is a predictable stopping time, leading to unrealistically low

values for short-term credit spreads.

For these reasons Duffie and Lando (2001) proposed a model where secondary markets

have only incomplete information on the asset value V . More precisely they consider the

situation where the market obtains at discrete time points tn a noisy accounting report of the

form Zn = lnVtn + εn; moreover, the market knows the default history of the firm. Duffie and

Lando show that in this setting the default time τ admits an intensity λt that is proportional to

the derivative of the conditional density of Vt at the default barrier K. This well-known result
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provides an interesting link between structural and reduced-form models. Moreover, the result

shows that by introducing incomplete information it is possible to construct structural models

with a fairly realistic behavior of short-term credit spreads. The subsequent work of Frey and

Schmidt (2009) discusses the pricing of the firm’s equity in the context of the Duffie-Lando

model. Moreover, it is shown that the pricing of typical corporate securities (equity and debt)

leads to a nonlinear filtering problem: one needs to determine the conditional distribution of

the current asset value Vt given the the σ field FM
t representing the information available to

the market up to time t. This problem is addressed by a Markov-chain approximation for the

asset value process. In particular, a recursive updating rule for the conditional distribution

of the approximating Markov chain is derived via elementary Bayesian updating arguments.

Both papers do not give results on the dynamics of corporate security price information under

incomplete information. In fact, the noisy accounting considered by Duffie and Lando implies

a very unrealistic dynamics of credit spreads: spreads evolve deterministically between the

news-arrival dates tn and jump only when a new noisy accounting report is received so that

credit spread volatility is zero.

These issues are addressed in the present paper. We model noisy asset observation by

a continuous time process of the form Zt =
∫ t
0 a(Vs)ds +Wt for some Brownian motion W

independent of V . This assumption is more in line with the standard literature on stochastic

filtering (see for instance Bain and Crisan (2009)) than the discrete noisy accounting informa-

tion of Duffie and Lando (2001). More importantly, we show that with this type of noisy asset

information asset prices follow processes of standard jump-diffusion type

As in Frey and Schmidt (2009), in this setup the pricing of corporate securities leads to the

task of determining the conditional distribution of Vt given the market information FM
t . This is

a challenging stochastic filtering problem, since under full observation, that is with observable

asset value process, the default time τ is predictable. Hence standard filtering techniques for

point process observations cannot be used. We therefore transform the original problem to

a new filtering problem where the observations consist only of the noisy asset information

via the hazard-rate approach to credit risk modelling (see for instance Blanchet-Scalliet and

Jeanblanc (2004)); the signal process in this new problem is on the other hand given by the

asset value process stopped at the first exit time of the solvency region (K,∞). Using results

of Pardoux (1978) on the filtering of stopped diffusion processes we derive a stochastic partial

differential equation (SPDE) for the conditional density π(t, ·) of Vt given FM
t , and we discuss

approaches for the numerical solution of this SPDE. Extending the Duffie and Lando (2001)-

result, we show that τ admits an intensity λt that is proportional to the spatial derivative of

π(t, ·) at v = K. These results permit us to derive the nonlinear filtering equations for the

market filtration. As a corollary we identify the price dynamics of equity and debt in the

market filtration. Understanding the price dynamics of corporate securities is a prerequisite

for any kind of derivative asset analysis in structural models with incomplete information so

that these are important new results. Finally we turn to more applied issues: we consider

the pricing of options on equity and debt, we briefly discuss model calibration and we present

several numerical experiments that further illustrate our results.

Incomplete information and stochastic filtering has been used frequently for the analysis

of credit risk. Structural models with incomplete information were considered among others

by Kusuoka (1999), Duffie and Lando (2001), Nakagawa (2001), Jarrow and Protter (2004),

Coculescu, Geman, and Jeanblanc (2008), Frey and Schmidt (2009) and Cetin (2012). The
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last paper works in a similar setup as the one considered here. Cetin uses purely probabilistic

arguments to establish the existence of a default intensity intensity λt in the market filtration,

and he derives the corresponding filter equations. His results are however less explicit than

ours; among others, Cetin (2012) does not give a characterization of λt in terms of the derivative

of the conditional density at the default barrier, there are no results on asset price dynamics

under incomplete information and no numerical experiments.

Reduced-form credit risk models with incomplete information have been considered previ-

ously by Duffie, Eckner, Horel and Saita (2009), Frey and Runggaldier (2010) and Frey and

Schmidt (2012), among others. The modelling philosophy of the present paper is inspired by

the analysis of Frey and Schmidt (2012), but the mathematical arguments used in the two

papers differ substantially.

The remainder of the paper is organized as follows: in Section 2 we introduce the model;

the pricing of basic corporate securities is discussed in Section 3; Section 4 is concerned with

the stochastic filtering of the asset value; in Section 5 we derive the filter equations and discuss

the dynamics of corporate securities; Section 6 is concerned with derivative pricing; the results

of numerical experiments are given in Section 7.

Acknowledgements. We are grateful for financial support from the German Science Foun-

dation (DFG).

2 The model.

We work on a filtered probability space (Ω,G,G = (Gt)t≥0, P ) and we assume that all processes

introduced below are G-adapted. We consider a company with asset value process V = (Vt)t≥0.

The company is subject to default risk and the default time is given by

τ = inf{t ≥ 0: Vt ≤ K} for some K > 0 . (2.1)

In practice the default barrierK might represent debt covenants as in Black and Cox (1976) or,

in the case of financial institutions, solvency capital requirements imposed by regulators. It is

well known that absence of arbitrage implies the existence of a probability measure Q ∼ P such

that for any traded security the corresponding discounted gains from trade are Q-martingales.

Since we are mainly interested in pricing, in the following assumptions it is thus sufficient to

specify the Q-dynamics of all economic variables introduced.

Assumption 2.1 (Dividends and asset value process). (i) The risk free rate of interest is

constant and equal to r ≥ 0.

(ii) Dividends are paid at discrete time points T1, T2, . . .; the expected size of the dividend

payment is proportional to the asset value at the dividend date. More precisely, let dn be the

dividend payment at Tn. We assume that

dn = δnVTn

for a iid sequence of noise variables (δn)n=1,2,..., independent of V , taking values in (0,+∞),

with density function fδ and mean δ̄ = EQ(δ1). We denote the cumulative dividend process
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by Dt =
∑

{n : Tn≤t} dn. The the conditional distribution of dn given the history of the asset

value process is thus of the form

ϕ(y, VTn−)dy where ϕ(y, v) = v−1fδ
(
y/v

)
. (2.2)

We assume that for all y ∈ R+ the map v �→ ϕ(y, v) is bounded and twice continuously

differentiable on [K,∞). We consider two different models for the timing of the dividends.

On the one hand the Tn might be deterministic and spaced equally in time (for instance to

semi-annual dividend payments); the number of dividend payments per year is denoted by

λD > 0. Alternatively we assume that Tn is the nth jump time of a Poisson process with

intensity λD. This case is introduced for convenience: with Poissonian dividend dates an easy

closed-form solution for the full-information value of the firm’s equity can be derived, see (3.8)

below.

(iii) The asset value process V solves the following SDE

dVt = (r − λD δ̄)Vtdt+ σVtdBt, V0 = V (2.3)

for a constant σ > 0 and a standard Q-Brownian motion B. Moreover, V has Lebesgue density

π0(v) for a continuously differentiable function π0 : [K,∞) → R+ with π0(K) = 0.

We denote the random measure associated with the marked point process (Tn, dn)n∈N by

μD(dy, dt). With Poissonian dividend dates the G-compensator of μD is given by γD(dy, dt) =

ϕ(y, Vt)dy λdt. If the dividend dates are deterministic we will typically use lower case letters for

dividend dates. In that case the compensator of μD is γD(dy, dt) =
∑∞

n=1 ϕ(y, Vtn )dy δtn(dt).

Comments. The assumption that the asset value is a geometric Brownian motion is rou-

tinely made in the literature on structural credit risk models such as Leland (1994) or Duffie

and Lando (2001). For empirical support for the assumption of geometric Brownian motion

as a model for the asset price dynamics we refer to Sun, Munves and Hamilton (2012). Note

that the assumption that V follows a geometric Brownian motion does not imply that the

equity value or stock price follows a geometric Brownian motion. In fact, our analysis in Sec-

tion 5 shows that in our setup the stock price dynamics can be much ‘wilder’ than geometric

Brownian motion.

Assumption 2.2. The following pieces of information are used by the market in the pricing

of corporate securities.

(i) Default information. The market observes the default state Nt = 1{τ≤t} of the firm.

We denote the default history by FN = (FN
t )t≥0.

(ii) Dividend information. The market observes the dividend payments or equivalently

the cumulative dividend process process D; the corresponding filtration is denoted by FD =

(FD
t )t≥0. Note that dividends carry information on Vt as the distribution of the dividend size

depends on the asset value at the dividend date.

(iii) Noisy asset observation. The market observes functions of V in additive Gaussian

noise. Formally, this bit of information is modelled via some process Z of the form

Zt =

∫ t

0
a(Vs)ds +Wt, . (2.4)
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Here W is an l-dimensional standard G-Brownian motion independent of B, and we assume

that a is a continuously differentiable function from R+ to Rl with a(K) = 0.4 Finally,

FZ = (FZ
t )t≥0 represents the filtration generated by Z. We view the process Z as an abstract

representation of all economic information on V that is used by the market in addition to the

publicly observed dividend payments.

Summarizing, the information set of the market at time t is given by the σ-field FM
t =

FN
t ∨FZ

t ∨FD
t ; the corresponding filtration is denoted by FM. Note that FM ⊂ G and that V

is not adapted to FM.

There are many possibilities for the form of the function a. A natural choice is a(v) =

c(ln v − lnK); this corresponds to a continuous-time version of the noisy asset information

considered in Duffie and Lando (2001). Here the parameter c ≥ 0 models the information

contained in Z; for c large the asset value can be observed with high precision whereas for c

close to zero the process Z conveys almost no information. Alternatively we consider a two-

dimensional specification of the form a1(v) = c1(ln v − lnK) and a2(v) = c2
(
(K̃ − ln v)+ −

(K̃ − lnK)
)
for some threshold K̃ that is close to the default barrier. Here the function a2

models the case where the market receives additional information if a firm is close to default,

perhaps due to additional monitoring activity by the stakeholders.

3 Pricing basic corporate securities and nonlinear filtering

In this section we discuss the pricing of basic corporate securities whose associated cash flow

stream depends on future dividend payments and on the occurrence of default and is thus

FN ∨ FD-adapted. Examples include bonds, credit default swaps (CDS) and the equity value

of the firm. In particular, we will see that the pricing of these basic securities leads to a

nonlinear filtering problem in a straightforward way. The pricing of securities whose payoff

depends on the price process of basic corporate securities - such as equity- or bond options -

is more involved and will be discussed in Section 6.

Since Q represents the martingale measure used for pricing, the ex-dividend price of a

generic security with FM-adapted cash flow stream (Ht)0≤t≤T and maturity date T is given by

ΠH
t = EQ

(∫ T

t
e−r(s−t)dHs | FM

t

)
, t ≤ T. (3.1)

Note that ΠH
t is defined as conditional expectation with respect to the σ-field FM

t that describes

the information available to the market at time t.

In the sequel we mostly consider the pre-default value of the security given by 1{τ>t}ΠH
t

(pricing for τ ≤ t is largely related to the modelling of recovery rates which is of no concern

to us here). Using iterated conditional expectations we get that

1{τ>t}ΠH
t = EQ

(
EQ

(
1{τ>t}

∫ T

t
e−r(s−t)dHs | Gt

) | FM
t

)
.

4The assumption a(K) = 0 is no real restriction as the function a can be replaced with a − a(K) without

altering the information content of FM.

5



By the Markov property of V , for typical corporate securities the inner conditional expectation

can be expressed as a function of time and of the current asset value, that is

EQ
(
1{τ>t}

∫ T

t
e−r(s−t)dHs | Gt

)
= 1{τ>t}h(t, Vt). (3.2)

The function h will be called full-information value of the claim. Below we compute this

function for several important examples. We thus get from (3.2) that

1{τ>t}ΠH
t = 1{τ>t}EQ

(
h(t, Vt) | FM

t ). (3.3)

Since V is not FM adapted, the evaluation of this conditional expectation is a nonlinear filtering

problem that is discussed in Section 4. Note that martingale pricing generally leads to nonlinear

filtering problems under the martingale measure Q rather than the physical measure P .

In the remainder of this section we explain how the full information value h can be computed

for debt-related securities such as bonds or CDSs and for the equity of the firm.

Full-information value of debt securities. It is well-known that the valuation of debt

securities of the firm can be reduced to the pricing of two building blocks, namely a so-called

survival claim and a so-called payment-at-default claim. A survival claim pays one unit of

account at the maturity date T provided that τ > T . By standard results the corresponding

full-information value hsurv solves the boundary value problem d
dth

surv + LV h
surv = rhsurv,

t ∈ [0, t) × (K,∞), with boundary and terminal conditions hsurv(t,K) = 0, 0 ≤ t ≤ T and

hsurv(T, v) = 1, v > K. Here

LV f(v) = (r − λD δ̄)v
df

dv
(v) +

1

2
σ2v2

d2f

dv2
(v) (3.4)

is the generator of V . A payment-at-default claim with maturity T pays one unit directly at τ ,

provided that τ ≤ T . The corresponding full information value hdef solves the boundary value

problem d
dth

def + LV h
def = rhdef for t ∈ [0, t) × (K,∞), with boundary value hdef(t,K) = 1,

0 ≤ t ≤ T and terminal value hdef(T, v) = 0, v > K.

Since V is modeled as a geometric Brownian motion, log Vt satisfies log Vt = μt+σBt with

μ := r − λD δ̄ − 1
2σ

2. Hence hsurv and hdef can be computed using results for the first passage

time of Brownian motion with drift. Denote by

f(t; b) :=
|b|√
2πt3σ

exp
(
− (b− μt)2

2σ2t

)
(3.5)

the density function of the first passage time of the process σBt + μt to the level b, see for

instance Karatzas and Shreve (1988), Section 3.5.C. Then we have for v > K

hsurv(t, v) = e−r(T−t)
(
1−

∫ T−t

0
f
(
s, log

K

v

)
ds
)

and hdef(t, v) =

∫ T−t

0
e−rsf

(
s, log

K

v

)
ds .

Full information value of equity. In our setup the value of the firm’s equity is given by

the expected discounted value of future dividend payments up to the default time τ , that is

heq(v) = EQ
(∫ ∞

0
1{τ>s}e−rsdDs | V0 = v

)
(3.6)
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We now give an explicit formula for heq for the case of Poissonian dividends. In that case

Dt −
∫ t
0 δ̄Vsλ

D ds is a martingale and it holds that

heq(v) = EQ
( ∫ ∞

0
1{τ>s}e−rsδ̄Vsλ

D ds | V0 = v
)

The full-information value heq(v) is thus time-independent (this is the main advantage of

assuming Poissonian dividend dates) and it solves the ordinary differential equation LV h
eq(v)+

δ̄λDv = rheq(v), v > K. In the special case where K = 0 and hence τ = ∞ we get

heq(v) = λD δ̄

∫ ∞

0
e−rsEQ

(
Vs | V0 = v

)
ds = λD δ̄

∫ ∞

0
e−rsve(r−δ̄λD)s ds = v . (3.7)

This implies in particular that the asset value can be interpreted as present value of all future

dividend payments (up to t = ∞). For K > 0 it holds that

heq(v) = v −K(
v

K
)α

∗
, (3.8)

where α∗ is the negative root of the equation (r− λD δ̄)α+ 1
2σ

2α(α− 1)− r = 0. This can be

shown by standard arguments, see for instance Proposition 2.4 of Frey and Schmidt (2009).

With deterministic dividend dates t1, t2, . . . it holds that

heq(t, v) =
∑

n : tn>t

EQ
(
e−r(tn−t)dn1{τ>tn} | Vt = v

)

=
∑

n : tn>t

EQ

(
e−r(tn−t)δ̄Vtn1{min

s≤tn
Vs>K} | Vt = v

)
.

It follows that heq is given by a sum of barrier option prices and is thus computable as well; we

omit the details. Note finally that for finely spaced dividend dates the equity value computed

with Poissonian dividend dates is a good approximation to the equity value computed for

deterministic dividend dates, which is why we work with heq as given in (3.8) in the sequel.

4 Stochastic Filtering of the Asset Value

The pricing of corporate securities leads to the task of computing for g ∈ L∞(
[K,∞)

)
the

conditional expectation

1{τ>t}EQ
(
g(Vt) | FM

t

)
, t ≤ T . (4.1)

This problem is studied in the present section.

4.1 Preliminaries

The inclusion of the default information FN in the investor information creates problems for

the analysis of (4.1): since the default indicator N does not admit an intensity under full

information, standard filtering techniques for point process observations as in Brémaud (1981)

do not apply. This difficulty is addressed in the following proposition.
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Proposition 4.1. Denote by V τ = (Vt∧τ )t≥0 the asset value process stopped at the default

boundary, by Z̃t =
∫ t
0 a(V

τ
s )ds +Wt the noisy asset information corresponding to the signal

process V τ and by D̃t =
∑

{n : Tn≤t} δnV
τ
Tn

the cumulative dividend process corresponding to

V τ . Then we have for g ∈ L∞(
[K,∞)

)

1{τ>t}EQ(g(Vt) | FM
t ) = 1{τ>t}

EQ
(
g(V τ

t )1{V τ
t >K} | F Z̃

t ∨ FD̃
t

)
Q
(
V τ
t > K | F Z̃

t ∨ FD̃
t

) . (4.2)

Proof. For notational simplicity we ignore the dividend observation in the proof so that FM =

FZ ∨ FN . In the first step we show that FZ can be replaced with the filtration FZ̃ that is

generated by the stopped asset value process. This will follow from the relation

EQ
(
g(Vt)1{τ>t} | FM

t

)
= EQ

(
g(V τ

t )1{τ>t} | FZτ

t ∨ FN
t

)
, (4.3)

where FZτ
is the filtration generated by the stopped process Zτ . To this, note first that

FZτ ∨ FN is a subfiltration of FM (as τ is an FM stopping time), so that the right hand side of

(4.3) is FM
t -measurable. Moreover, for τ > t one has V τ

t = Vt and (Zτ
s )

t
s=0 = (Zs)

t
s=0. Hence

we get for any bounded measurable functional h : C([0, T ]) → R that

EQ
(
g(Vt)1{τ>t}h((Zs)

t
s=0)

)
= EQ

(
g(V τ

t )1{τ>t}h((Zτ
s )

t
s=0)

)
= EQ

(
EQ

(
g(V τ

t )1{τ>t} | FZτ

t ∨ FN
t

)
h((Zτ

s )
t
s=0)

)
. (4.4)

Due to the presence of the indicator 1{τ>t} in (4.4) we may replace h((Zτ
s )

t
s=0) with h((Zs)

t
s=0)

in that equation, so that we obtain (4.3) by the definition of conditional expectations. A similar

argument shows that EQ
(
g(Vt)1{τ>t} | F Z̃

t ∨FN
t

)
= EQ

(
g(Vt)1{τ>t} | FZτ

t ∨FN
t

)
, which gives

the equality

EQ
(
g(Vt)1{τ>t} | FM

t

)
= EQ

(
g(V τ

t )1{τ>t} | F Z̃
t ∨ FN

t

)
. (4.5)

Using the Dellacherie formula (see for instance Lemma 3.1 in Elliott, Jeanblanc and Yor (2000))

and the relation {τ > t} = {V τ
t > K}, we finally get

EQ
(
g(V τ

t )1{τ>t} | F Z̃
t ∨ FN

t

)
= 1{τ>t}

EQ
(
g(V τ

t )1{τ>t} | F Z̃
t

)
Q
(
τ > t | F Z̃

t

)
= 1{τ>t}

EQ
(
g(V τ

t )1{V τ
t >K} | F Z̃

t

)
Q
(
V τ
t > K | F Z̃

t

) ,

as claimed.

With the notation f(v) := g(v)1{v>K} Proposition 4.1 shows that in order to evaluate the

right side of (4.2) one needs to compute for generic f ∈ L∞(
[K,∞)

)
conditional expectations

of the form

EQ
(
f(V τ

t ) | F Z̃
t ∨ FD̃

t

)
(4.6)

This is a stochastic filtering problem with signal process given by V τ (the asset value process

stopped at the first exit time of the halfspace (K,∞)) and with standard diffusion and point

process information.
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In the sequel we study this problem using results of Pardoux (1978) on the filtering of

diffusions stopped at the first exit time of some bounded domain. In order to be in a situation

where the results of Pardoux (1978) are applicable we choose some large number N and

replace the unbounded halfspace (K,∞) with the bounded domain (K,N). For this we define

the stopping time σN = inf{t ≥ 0: Vt ≥ N} and we replace the original asset value process V

with the stopped process V N := (Vt∧σN
)t≥0. Applying Proposition 4.1 to the process V N leads

to a filtering problem with signal process X := (V N )τ . More precisely, one has to compute

conditional expectations of the form

EQ
(
f(Xt) | FZ

t ∨ FD
t

)
(4.7)

where, with a slight abuse of notation, Zt =
∫ t
0 a(Xs)ds +Wt and Dt =

∑
{n : Tn≤t} δnXTn .

Note that τ ∧ σN is the first exit time of V from the domain (K,N). Moreover, it holds

by definition that Xt = Vt∧τ∧σN
, i.e. X is equal to the asset value process V stopped at the

boundary of the bounded domain (K,N). Hence the state space of X is given by SX := [K,N ]

and the analysis of Pardoux (1978) applies to the problem (4.7).

The next proposition shows that replacing V with the stopped process V N does not affect

the financial implications of the analysis, provided that N is sufficiently large.

Proposition 4.2. 1. Fix some horizon date T > 0 and let F be an arbitrary subfiltration of

G. Then for ε > 0, it holds that

Q
(

sup
0≤t≤T

Q(σN ≤ t | Ft) > ε
)
≤ 1

ε
Q(σN ≤ T ) → 0 as N → ∞,

i.e. the conditional probability that V reaches the upper boundary N can be made arbitrarily

small by making N sufficiently large, uniformly for all subfiltrations F of G.

2. Consider a function f : [K,∞) → R) so that Yt = sups≤t

∣∣f(V τ
s )

∣∣ is an integrable process.

Then, as N → ∞, the solution of the filtering problem (4.7) (the problem with domain (K,N) )

converges in probability to the solution of the filtering problem (4.6) (the problem with domain

(K,∞).)

The proof of the proposition is given in Appendix A. We mention that Statement 2 applies to

the full-information value of the corporate securities discussed in Section 3.

Zakai equations. As in Pardoux (1978) we adopt the reference probability approach to solve

the filtering problem (4.7). Under this approach one considers the model under an equivalent

measure Q∗ such that Z and X are independent and reverts to the original dynamics via a

change of measure. In a first step we consider the filtering problem without the additional

dividend information; dividends will be included in Section 4.3.

It will be convenient to model the pair (X,Z) on a product space (Ω,G,G, Q∗). Denote

by (Ω2,G2,G2, Q2) some filtered probability that supports an l-dimensional Wiener process

Z = (Zt(ω2))0≤t≤T . Given some probability space (Ω1,G1,G1, Q1) supporting the process X

we let Ω = Ω1×Ω2, G = G1⊗G2, G = G1⊗G2 and Q∗ = Q1⊗Q2, and we extend all processes

to the product space in the obvious way. Note that this construction implies that under Q∗,
Z is an l-dimensional Brownian motion independent of X. Consider a Girsanov-type measure

transform of the form Lt = (dQ/dQ∗)|Ft with

Lt = Lt(ω1, ω2) = exp
(∫ t

0
a
(
Xs(ω1)

)�
dZs(ω2)− 1

2

∫ t

0
|a(Xs(ω1)

)|2 ds) . (4.8)
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Girsanov’s theorem for Brownian motion implies that under Q the pair (X,Z) has the correct

joint law. Using the abstract Bayes formula, one has for f ∈ L∞(SX) that

EQ
(
f(Xt) | FZ

t

)
=
EQ∗(

f(Xt)Lt | FZ
t

)
EQ∗(Lt | FZ

t )
. (4.9)

We concentrate on the numerator. Using the product structure of the underlying probability

space we get that

EQ∗(
f(Xt)Lt | FZ

t

)
(ω) = EQ1

(
f(Xt)Lt(·, ω2)

)
=: Σtf(ω) (4.10)

In Theorem 1.3 and 1.4 of Pardoux (1978) the following characterization of Σt is derived.

Proposition 4.3. Denote by (Tt)t≥0 the transition semigroup of the Markov process X, that

is for f ∈ L∞(SX) and x ∈ SX , Ttf(x) = EQ
x (f(Xt)). Then the following holds

1. Σtf as defined in (4.10) satisfies the equation

Σtf = Σ0(Ttf) +

l∑
i=1

∫ t

0
Σs(aiTt−sf) dZ

i
s (4.11)

2. Let Σ̃ be an FZ adapted process taking values in the set of bounded and positive measures

on SX . Suppose that for f ∈ C0(SX) Σ̃tf :=
∫
SX f(x)Σ̃t(dx) satisfies equation (4.11)

and that moreover Σ0 = Σ̃0. Then for all 0 ≤ t ≤ T , Σt = Σ̃t a.s.

Comments. In the sequel we will mostly use the vector notation
∫ t
0 Σs(a

�Tt−sf) dZs to

denote the stochastic integral in (4.11). Equation (4.11) can be viewed as mild form of the

classical Zakai equation. In fact, it is easily seen that for f in the domain of the generator LX

of X, (4.11) is equivalent to the equation

Σtf = Σ0f +

∫ t

0
Σs(LXf)ds+

∫ t

0
Σs(a

�f)dZs.

However, in the sequel we need to determine Σtf also for non-smooth functions such as f(x) =

1{K}(x), so that we prefer to work with (4.11).

4.2 An SPDE for the Density of Σt

In this section we derive an SPDE for the density u = u(t, ·) of the solution Σt of the Zakai

equation (4.11). We begin with the necessary notation. First, we introduce the Sobolev spaces

Hk(SX) =
{
u ∈ L2(SX) :

dαu

dxα
∈ L2(SX) for α ≤ k

}
,

where the derivatives are assumed to exist in the weak sense. Moreover, we let H1
0 (S

X) =

{u ∈ H1(SX) : u = 0 on the boundary ∂SX} (the trace on ∂SX exists by standard results on

Sobolev spaces). The scalar product in L2(SX) is denoted by (· , ·)SX .

Consider for f ∈ H2(SX) the differential operator L∗ with

L∗f(x) =
1

2

d2

dx2
(
σ2x2f

)
(x)− d

dx

(
(r − δ̄λD)xf

)
(x). (4.12)
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L∗ is adjoint to LV in the following sense: one has
(
f,LV g

)
SX =

(L∗f, g
)
SX whenever f, g ∈

H2(SX) ∩ H1
0 (S

X). Next we define an extension of −L∗ to the entire space H1
0 (S

X). For

this we denote by H1
0 (S

X)′ the dual space of H1
0 (S

X) and by 〈·, ·〉 the duality pairing between

H1
0 (S

X)′ and H1
0 (S

X). Then we may define a bounded linear bounded operator A∗ from

H1
0 (S

X) to H1
0 (S

X)′ by

〈A∗f, g〉 = 1

2

(
σ2x2

df

dx
,
dg

dx

)
SX +

(
(σ2 − r + δ̄λD)xf ,

dg

dx

)
SX . (4.13)

Partial integration shows that for f ∈ H2(SX)∩H1
0 (S

X) and g ∈ H1
0 (S

X) one has 〈A∗f, g〉 =
−(L∗f, g

)
SX , so that A∗ is in fact an extension of −L∗.

We will show that the density of Σt can be described in terms of the SPDE

du(t) = −A∗u(t)dt+ a�u(t)dZt, u(0) = π0, (4.14)

This equation is to be understood as an equation in the dual space H1
0 (S

X)′, that is for every
v ∈ H1

0 (S
X) one has the relation

(
u(t), v

)
SX = (u(0), v

)
SX −

∫ t

0
〈A∗u(s), v〉ds +

l∑
i=1

∫ t

0

(
aiu(s), v

)
SXdZs . (4.15)

In the sequel we will mostly denote the stochastic integral with respect to the vector process

Z by
∫ t
0

(
a�u(s), v

)
SXdZs.

Theorem 4.4. Suppose that Assumptions 2.1 and 2.2 hold and that the initial density π0
belongs to H1

0 (S
X). Then the following holds.

1. There is a unique FZ-adapted solution u ∈ L2
(
Ω × [0, T ], Q∗ ⊗ dt;H1

0 (S
X)

)
of equation

(4.14).

2. u has additional regularity: it holds that u(t) ∈ H2(SX) a.s. and that the trajectories

of u belong to C
(
[0, T ],H1

0 (S
X)

)
, the space of H1

0 (S
X)-valued continuous functions with

the supremum norm. Moreover, u(t, ·) ≥ 0 Q∗ a.s.

3. The process u(t) (essentially) describes the solution of the measure-valued Zakai equation

(4.11): for f ∈ L∞(SX) one has

Σtf =
(
u(t), f

)
SX + νK(t)f(K) + νN (t)f(N), where (4.16)

0 ≤ νK(t) =

∫ t

0

1

2
σ2K2du

dx
(s,K)ds, (4.17)

0 ≤ νN (t) = −
∫ t

0

1

2
σ2N2du

dx
(s,N)ds+

∫ t

0
a�(N)νN (s)dZs . (4.18)

Comments. Since u(t) belongs to H2(SX) ∩H1
0 (S

X), (4.15) can be written as

(
u(t), v

)
SX = (u(0), v

)
SX +

∫ t

0

(L∗u(s), v
)
SXds+

∫ t

0

(
a�u(s), v

)
SX dZs; (4.19)

moreover, an approximation argument shows that (4.19) holds for v ∈ L2(SX) (and not only

for v ∈ H1
0 (S

X)).
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Statement 3 shows that the measure Σt has a Lebesgue-density on the interior of SX and

a point mass on the boundary points K and N . In view of Proposition 4.2, the point mass

νN (t) is largely irrelevant; the point mass νK(t) on the other hand will be important in the

analysis of the default intensity in Section 5.

The assumption that SX is a bounded domain is needed in the proof of Statement 2;

given the existence of a sufficiently regular nonnegative solution of equation (4.14) the proof

of Statement 3 is valid for an unbounded domain as-well.

Proof. Statements 1 and 2 follow directly from Theorems 2.1, 2.3 and 2.6 of Pardoux (1978).

We give a sketch of the proof of 3, as this explains why (4.14) is the appropriate SPDE to

consider; moreover our arguments justify the form of νK and νN .

Note first that by standard results for Sobolev spaces, the derivatives of u at the boundary

points of SX exist, as u(t) ∈ H2(SX). Moreover, as u(t, x) ≥ 0 on SX , we have du
dx(t,K) ≥ 0

and du
dx(t,N) ≤ 0, so that νK(t) ≥ 0 and νN (t) ≥ 0. Denote by Σ̃t the measure-valued process

that is defined by the right side of (4.16). In order to show that Σ̃t solves the mild-form Zakai

equation (4.11) fix some continuous function f : SX → R and some t ≤ T , and denote by

ū(s, x) the solution of the terminal and boundary value problem

ūs + LV ū = 0, (t, x) ∈ (0, t) × (K,N),

with terminal condition ū(t, x) = f(x), x ∈ SX , and boundary conditions u(s,K) = f(K),

u(s,N) = f(N), s ≤ t. It is well-known that ū describes the transition semigroup of X, that

is ū(s, x) = Tt−sf(x), 0 ≤ s ≤ t. As ū(t) = f we obtain from the definition of Σ̃t and the

dynamics of νK(t) and νN (t) that

Σ̃tf =
(
u(t), ū(t)

)
SX +

∫ t

0

1

2
σ2K2du

dx
(s,K)f(K)ds

−
∫ t

0

1

2
σ2N2du

dx
(s,N)f(N)ds +

∫ t

0
a�(N)νN (s)f(N) dZs .

Next we compute the differential of
(
u(t), ū(t)

)
SX . We get, using the Ito product formula,

(4.19) and the relation dū(s) = −LV ū(s)ds, that

(
u(t), ū(t)

)
SX = (u(0), ū(0)

)
SX +

∫ t

0

(L∗u(s), ū(s)
)
SXds+

∫ t

0

(
a�u(s), ū(s)

)
SXdZs

+

∫ t

0

(
u(t),−LV ū(s)

)
SXds .

Partial integration gives, using the boundary conditions satisfied by ū,∫ t

0

(
u(t),−LV ū(s)

)
SXds = −

∫ t

0

(L∗u(s), ū(s)
)
SXds+

∫ t

0

[1
2
σ2K2du

dx
(s, x)f(x)

]N
K
ds .

Hence we get

Σ̃tf =
(
u(0), ū(0)

)
SX +

∫ t

0

(
a�u(s), ū(s)

)
SX + a�(N)νN (s)f(N) dZs .
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Now note that for x ∈ [K,N ], ū(s)(x) = Tt−sf(x). Using that a(K) = 0 by Assumption 2.2,

we obtain that the stochastic integral with respect to Z equals∫ t

0

{(
a�u(s), Tt−sf

)
SX + a�(K)νK(s)Tt−sf(K) + a�(N)νN (s)Tt−sf (N)

}
dZs .

Hence it holds that Σ̃tf = Σ̃0(Ttf) +
∫ t
0 Σ̃s(a

�Tt−sf) dZs . Moreover, Σ0f =
(
π0, f

)
SX = Σ̃0f ,

so that Σt = Σ̃t by Proposition 4.3.

4.3 Conditional Distribution with respect to FM

In this subsection we compute the conditional distribution of X with respect to the market

filtration FM = FZ ∨ FD ∨ FN . We begin by including the dividend information FD in the

analysis. For this we use an extension of the reference probability argument from Section 4.1.

Recall that we denote the dividend dates by Tn, n ≥ 1, that dn denotes the dividend paid at

Tn and that the conditional density of dn given XTn = x is denoted by ϕ(y, x). In the sequel

we let T0 = for notational convenience.

We consider the case of Poissonian dividend dates which is notationally easier. Fix some

strictly positive reference density ϕ∗(y) on R+ and suppose that the space (Ω2,G2,G2, Q2)

supports a random measure μD(dy, dt) with compensating measure equal to γD,∗(dy, dt) =

ϕ∗(y)dyλDdt and that μD is independent of the Brownian motion Z. In order to revert to

the original model dynamics we introduce the density martingale Lt = L1
tL

2
t where L1

t is as in

(4.8) and where L2
t = L2

t (ω1, ω2) is given the solution of the SDE

L2
t = 1 +

∫ t

0

∫
R+

L2
s−

(ϕ(y,Xs)

ϕ∗(y)
− 1

)
(μD − γD,∗)(dy, ds) . (4.20)

Since ϕ(·, x) and ϕ are probability densities we get∫
R+

(ϕ(y, x)
ϕ∗(y)

− 1
)
ϕ∗(y)dy =

∫
R+

(ϕ(y, x) − ϕ∗(y))dy = 1− 1 = 0 . (4.21)

Hence
∫ t
0

∫
R+

(ϕ(y,Xs)
ϕ∗(y) − 1

)
γD,∗(dy, ds) ≡ 0 and we obtain that

L2
t = 1 +

∫ t

0

∫
R+

L2
s−

(ϕ(y,Xs)

ϕ∗(y)
− 1

)
μD(dy, ds) =

∏
Tn≤T

ϕ(dn,XTn)

ϕ∗(dn)
. (4.22)

Since L1 and L2 are orthogonal it holds that

dLt = Lt−a(Xt)
�dZt +

∫
R+

Lt−
(ϕ(y,Xt)

ϕ∗(y)
− 1

)
(μD − γD,∗)(dy, dt) .

The next lemma shows that (Lt)0≤t≤T is in fact the appropriate density martingale to consider.

Lemma 4.5. It holds that EQ∗
(LT ) = 1. Define the measure Q by (dQ/dQ∗)|GT

= LT . Then

under Q the random measure μD has G-compensator γD(dy, dt) = ϕ(y,Xt)dyλ
Ddt. Moreover,

the triple (X,Z,D) with Dt =
∫ t
0 y μ

D(dy, ds) has the joint law postulated in Assumption 2.1.
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The proof is given in Appendix A. In analogy with (4.10) we let Σtf (ω) = EQ∗(
f(Xt)Lt(·, ω2)

)
.

With dividends the SPDE for the density of the absolutely continuous part of the measure-

valued process Σt becomes

du(t) = −A∗u(t)dt+ a�u(t)dZt +

∫
R+

u(t−)
(ϕ(y, ·)
ϕ∗(y)

− 1
)
(μD − γD,∗)(dy, dt) , (4.23)

with initial condition u(0) = π0. The interpretation of (4.23) is analogous to the previous

section: for v ∈ H1
0 (S

X) it holds that

(
u(t), v

)
SX = (u(0), v

)
SX −

∫ t

0
〈A∗u(s), v〉ds +

∫ t

0

(
a�u(s), v

)
SXdZs

+

∫ t

0

∫
R+

(
u(s−)

(ϕ(y, ·)
ϕ∗(y)

− 1
)
, v
)
SX (μD − γD,∗)(dy, ds) . (4.24)

Note that (4.21) implies that the integral wrt γD,∗(dy, ds) can be dropped in (4.24). Hence

we can give a simple description of the dynamics (4.23): between dividend dates, that is on

(Tn−1, Tn), n ≥ 1, u(t) solves the SPDE (4.14) with initial value u(Tn−1); at t = Tn one has

u(Tn, x) = u(Tn−, x)ϕ(dn, x)
ϕ∗(dn)

. (4.25)

Since the mapping x �→ ϕ(y, x) is smooth by Assumption 2.1, the function u(Tn) defined in

(4.25) is an element of H1
0 (S

X). Hence we may apply Theorem 4.4 iteratively on each of

the intervals (Tn−1, Tn), yielding the existence of a unique positive solution u(t) ∈ H1
0 (S

X) ∩
H2(SX) of the SPDE (4.23).

The next result extends Theorem 4.4 to the case with dividends.

Proposition 4.6. Denote by u(t) the solution of the SPDE (4.23) and define

νK(t) =

∫ t

0

1

2
σ2K2du

dx
(s,K)ds+

∫ t

0

∫
R+

νK(s−)
(ϕ(y,K)

ϕ∗(y)
− 1

)
(μD − γD,∗)(dy, ds) (4.26)

νN (t) = −
∫ t

0

1

2
σ2N2du

dx
(s,N)ds+

∫ t

0
a�(N)νN (s)dZs (4.27)

+

∫ t

0

∫
R+

νN (s−)
(ϕ(y,N)

ϕ∗(y)
− 1

)
(μD − γD,∗)(dy, ds) .

Then it holds that Σtf =
(
u(t), f

)
SX + νK(t)f(K) + νN (t)f(N).

Proof. We proceed via induction over the dividend dates. For t ∈ [0, T1) there is no dividend

information and the claim follows from Theorem 4.4. Suppose now that the claim of the

Proposition holds for t ∈ [0, Tn). From (4.22) we have that LTn = LTn−
ϕ(dn,XTn )
ϕ∗(dn) and hence,

using the induction hypothesis,

ΣTnf (ω) = EQ∗(
LTn−(·, ω2)f(XTn)

ϕ(dn(ω2),XTn)

ϕ∗(dn(ω2))

)
=

(
u(Tn−), f

ϕ(dn, ·)
ϕ∗(dn)

)
SX + νK(Tn−)f(K)

ϕ(dn,K)

ϕ∗(dn)
+ νN (Tn−)f(N)

ϕ(dn,K)

ϕ∗(dn)
.

(4.28)
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The dynamics of u(t), νK(t) and νN (t) imply that

u(Tn, x) = u(Tn−, x)ϕ(dn, x)
ϕ∗(dn)

; νK(Tn) = νK(Tn−)
ϕ(dn,K)

ϕ∗(dn)
; νN (Tn) = νN (Tn−)

ϕ(dn, N)

ϕ∗(dn)
.

Hence (4.28) equals
(
u(Tn), f

)
SX + νK(Tn)f(K) + νN (Tn)f(N), which proves the claim.

Remark 4.7. 1. In order to derive the SPDE for u with deterministic dividend dates t1, t2, . . .

one applies the previous arguments assuming that μD has Q∗-compensator γ̃D,∗(dy, dt) =∑∞
n=1 ϕ

∗(y)dy δtn(dt); the whole derivation goes through with only notational changes.

2. For the filtering results it does not matter that the dn are dividend payments, so that

our analysis applies also to other types of noisy asset information arriving discretely in time

such as rating changes.

Finally we return to the filtering problem with respect to the market filtration FM. Com-

bining Propositions 4.1 and 4.6 we immediately obtain the following result.

Corollary 4.8. One has for f ∈ L∞(SX)

1{τ>t}EQ
(
f(Xt) | FM

t

)
= 1{τ>t}

(
(π(t, ·), f)SX + πN (t)f(N)

)
, (4.29)

with π(t, x) = u(t, x)/C(t) and πN (t) = νN (t)/C(t) and with norming constant C(t) given by

C(t) =
(
u(t), 1

)
SX + νN (t).

Remark 4.9. In view of Proposition 4.2, for practical purposes the νN -term that corresponds

to the conditional probability of reaching the upper boundary of SX prior to the horizon date

can be dropped. With this simplification we get for t ∈ [0, τ)

EQ(f(Vt) | FM
t ) ≈ (

π̃(t), f
)
SX with π̃(t, x) = 1(K,N)(x)

u(t, x)(
u(t), 1

)
SX

. (4.30)

4.4 Finite-dimensional approximation of the filter equation

The SPDE (4.14) is a stochastic partial differential equation and thus an infinite-dimensional

object. In order to solve the filtering problem numerically and to generate price trajectories

of for basic corporate securities one needs to approximate (4.14) by a finite-dimensional equa-

tion. A natural way to achieve this is the Galerkin approximation method. We first explain

the method for the case without dividend payments. Consider m linearly independent basis

functions e1, . . . , em ∈ H1
0 (S

X) ∩ H2(SX) generating the subspace H(m) ⊂ H1
0 (S

X), and de-

note by pr(m) : H1
0 (S

X) → H(m) the projection on this subspace with respect to (·, ·)SX . In

the Galerkin method the solution ũ of the equation

dũ(t) = pr(m) ◦L∗ ◦ pr(m) ũ(t)dt+ pr(m)(a� pr(m) ũ(t)) dZt, ũ(0) = pr(m) π0 (4.31)

is used as an approximation to the solution u of (4.14). Since projections are self-adjoint, we

get that for v ∈ H1
0 (S

X)

d
(
ũ(t), v

)
SX =

(L∗ ◦ pr(m) ũ(t),pr(m) v
)
SXdt+

(
a� pr(m) ũ(t),pr(m) v

)
SXdZt. (4.32)

Hence d(ũ(t), v)SX = 0 if v belongs to (H(m))⊥. Since moreover ũ(0) = pr(m) π0 ∈ H(m) we

conclude that ũ(t) ∈ H(m) for all t. Hence ũ is of the form ũ(t) =
∑m

i=1 ψi(t)ei, and we now
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determine an SDE system for the m dimensional process Ψ(m)(t) = (ψ1(t), . . . , ψm(t))′. Using
(4.32) we get for j ∈ {1, . . . ,m}

d
(
ũ(t), ej

)
SX =

m∑
i=1

ψi(t)
(L∗ei, ej

)
SXdt+

l∑
k=1

m∑
i=1

(
akei, ej

)
SXψi(t)dZ

k
t . (4.33)

On the other hand,

d(ũ(t), ej)SX =

m∑
i=1

(ei, ej)dψi(t). (4.34)

Define now the m×m matrices A, B and C1, . . . , C l with aij = (ei, ej)SX , bij = (L∗ei, ej)SX

and ckij = (akei, ej)SX . Equating (4.33) and (4.34), we get the following system of SDEs for

Ψ(m)

dΨ(m)(t) = A−1B�Ψ(m)(t)dt+

l∑
k=1

A−1CkΨ(m)(t)dZk
t (4.35)

with initial condition Ψ(m)(0) = A−1
(
(π0, e1)SX , . . . , (π0, em)SX

)′
. Equation (4.35) can be

solved with numerical methods for SDEs such as a simple Euler scheme or the more advanced

splitting up method proposed by Le Gland (1992). Further details regarding the numerical

implementation of the Galerkin method are given among others in Frey, Schmidt and Xu

(2013). Conditions for the convergence ũ → u are well-understood, see for instance Germani

and Piccioni (1987): the Galerkin approximation for the filter density converges for m → ∞
if and only if the Galerkin approximation for the deterministic forward PDE du

dt (t) = L∗u(t)
converges.

In the case with dividend information the Galerkin method is applied successively on each

interval (Tn−1, Tn), n = 1, 2, . . . . Denote by ũ(n) the approximating density over the interval

(Tn−1, Tn). In line with relation (4.25), the initial condition for the interval (Tn, Tn+1) is then

given by

ũ(Tn) = pr(m)

(
ũ(n)(Tn, ·)ϕ(dn, ·)

ϕ∗(dn)

)
,

that is by projecting the updated density ũ(n)(Tn, ·)ϕd(dn,·)
ϕ∗(dn) onto H(m).

5 Dynamics of Corporate Security Prices

In this section we study the dynamics of corporate security prices in the market filtration. It

will be shown that the the price processes of corporate securities are of jump-diffusion type,

driven by the noisy asset information Z, by the compensated random measure corresponding

to the dividend payments and by the compensated default indicator process.

As a first step we derive the FM-semimartingale decomposition of the default indicator

process Nt = 1{τ≤t} and show that N admits an FM-intensity.
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5.1 Default intensity

Theorem 5.1. The FM-compensator of Nt is given by the process (Λt∧τ )t≥0 where Λt =
∫ t
0 λsds

and where the default intensity λt is given by

λt =
1

2
σ2K2dπ

dx
(t,K) . (5.1)

Here π(t, x) is conditional density of Xt given FM
t introduced in Corollary 4.8.

We mention that a similar result was obtained in Duffie and Lando (2001) for the case where

the noisy observation of the asset value process arrives only at deterministic time points.

Proof. We use the following well-known result to determine the compensator of N (see for

instance Blanchet-Scalliet and Jeanblanc (2004)).

Proposition 5.2. Let Ft = Q(τ ≤ t | FZ
t ∨ FD

t ) and suppose that Ft < 1 for all t. Denote

the Doob-Meyer decomposition of the bounded FZ ∨ FD-submartingale F by Ft = MF
t + AF

t .

Define the process Λ via

Λt =

∫ t

0
(1− Fs−)−1dAF

s , t ≥ 0.

Then Nt − Λt∧τ is an FM-martingale. In particular, if AF is absolutely continuous, that is if

dAF
t = γAt dt, τ has the default intensity λt = γAt /(1 − Ft).

In order to apply the proposition we need to compute the Doob-Meyer decomposition of

the submartingale F . Here we get

Ft = Q(τ ≤ t | FZ
t ∨ FD

t ) = Q(Xt = K | FZ
t ∨ FD

t ) =
Σt1{K}
Σt1

.

Proposition 4.6 gives Σt1{K} = νK(t). In order to simplify the exposition we assume that the

densities ϕ(·, x), x ∈ SX , have common support. In that case we may choose the reference den-

sity ϕ∗ in Proposition 4.6 as ϕ∗(y) := ϕ(y,K), and it follows that dνK(t) = 1
2σ

2K2 du
dx(t,K)dt.

Next we consider the term (Σt1)
−1. By definition it holds that Σt1 = EQ∗

(Lt | FZ
t ∨FD

t ) =

(dQ/dQ∗)|FZ
t ∨FD

t
. Hence we get that

(Σt1)
−1 = (dQ∗/dQ)|FZ

t ∨FD
t
; (5.2)

in particular, (Σt1)
−1
t≥0 is a Q martingale. Ito’s product rule therefore gives that

AF
t =

∫ t

0

1

Σs1

1

2
σ2K2du

dx
(s,K) ds.

Furthermore we have

1− Ft = Q(Xt > K | FZ
t ∨ FD

t ) =
1

Σt1

((
u(t), 1

)
SX + νN (t)

)
. (5.3)

The claim thus follows from Proposition 5.2 and from the definition of π(t, x) in Corollary 4.8.
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5.2 Filter Equations and Asset Price Dynamics

In this section we derive the nonlinear filtering equations for the market filtration. As a

corollary we obtain the dynamics of corporate security prices.

In line with standard notation we denote for f ∈ L∞([0, T ] × SX) the optional projection

of the process f(t,Xt) on the market filtration by f̂t = EQ(f(t,Xt) | FM
t ). We denote the

generator of the Markov process X by LX ; note that for smooth functions f on SX one has

LXf(x) = 1(K,N)(x)LV f(x). Next we introduce the processes that drive the filtering equations

and hence asset price dynamics. First we let

MZ
t =MZ,FM

t = Zt −
∫ t

0
EQ (a(Xs) | Fs) ds , t ≥ 0. (5.4)

It is well known that MZ is a (Q,FM) Brownian motion and hence the martingale part in the

FM-semimartingale decomposition of Z. Moreover, since with Poissonian dividend dates the

G-compensator of the random measure μD is given by ϕ(y,Xt)dy λ
Ddt, the FM-compensator

of μD equals

γD,FM

(dt, dy) = (ϕ̂(y))tdy λ
Ddt , (5.5)

where (ϕ̂(y))t is short for E
Q
(
ϕ(y,Xt) | FM

t

)
. Similarly, with deterministic dividend dates the

FM-compensator of μD is given by

γD,FM

(dt, dy) =
∑
n

= 1∞(ϕ̂(y))tdy δtn(dt) . (5.6)

With this notation at hand we give the nonlinear filtering equations in the following

Theorem 5.3. For f ∈ C1,2([0, T ]× SX) the optional projection f̂t has dynamics

f̂t = f̂0 +

∫ t

0

( d̂f
dt

)
s
+ (1−Ns−)(L̂Xf)s ds +

∫ t∧τ

0
(f̂ a)�s − f̂sâ

�
s dM

Z,FM

s

+

∫ t∧τ

0
(f(s,K)− f̂s−) d(Ns − λDs ds)

+

∫ t∧τ

0

∫
R+

(f̂ϕ(y))s− − f̂s−(ϕ̂(y))s−
(ϕ̂(y))s−

(μD − γD,FM

)(dy, ds) .

(5.7)

Proof. Using Corollary 4.8 and the fact that Xt = K on {τ ≤ t} one obviously has

f̂t = 1{τ≤t}f(t,K) + 1{τ>t}
{(
π(t), f(t, ·))

SX + πN (t)f(t,N)
}
. (5.8)

The main part of the proof is thus to compute the dynamics of πtf :=
(
π(t), f(t, ·))

SX +

πN (t)f(t,N). In order to keep the notation simple we first consider the case without dividend

information. We have

Lemma 5.4. It holds that

dπtf =
(
πt
(df
dt

+LXf
)−1

2
σ2K2dπ(t,K)

dx
(f(t,K)−πtf)

)
dt+

(
πt(a

�f)−πta�πtf
)
d(Zt−πta dt).

(5.9)
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Proof of Lemma 5.4. We start with the case where f is time-independent. Recall from Corol-

lary 4.8 that πtf = 1
C(t) ((u(t), f)SX + νN (t)f(N)) with C(t) = (u(t), 1)SX + νN (t). Using

(4.19) and (4.18) we get

dC(t) =
((L∗u(t), 1

)
SX − 1

2
σ2N2du

dx
(t,N)

)
dt+

((
u(t), a�

)
SX + νN (t)a�(N)

)
dZt. (5.10)

Partial integration shows that the drift term in (5.10) equals −1
2σ

2K2 du
dx(t,K). Hence,

d
1

C(t)
=

1

2C(t)2
σ2K2du

dx
(t,K) dt− 1

C(t)2

((
u(t), a�

)
SX + νN (t)a�(N)

)
dZt

+
1

C(t)3

l∑
j=1

((
u(t), aj

)
SX + νN (t)aj

)2
dt .

Similarly, we obtain that

d
((
u(t), f

)
SX + νN (t)f(N)

)
=

((
u(t),LXf

)
SX − 1

2
σ2K2du

dx
(t,K)f(K)

)
dt

+
((
u(t), a�f

)
SX + νN (t)a�(N)f(N)

)
dZt.

(5.11)

Hence we get, using the Ito product formula and the fact that π(t, v) = u(t, v)/C(t)

dπtf =
1

C(t)
d
((
u(t), f

)
SX + νN (t)f(N)

)
+

((
u(t), f

)
SX + νN (t)f(N)

)
d

1

C(t)

+ d
[ 1
C
,
(
u, f

)
SX + νNf(N)

]
t

=
((
π(t),LXf

)
SX − 1

2
σ2K2dπ

dx
(t,K)f(K)

)
dt+ πt(a

�f) dZt

+
(1
2
σ2K2dπ

dx
(t,K)πtf +

l∑
j=1

(πtaj)
2πtf

)
dt − (πtf)(πta

�) dZt −
( l∑

j=1

(πtaj)(πtf)
)
dt .

Rearranging terms and using that πt(LXf) = (π(t),LXf)SX gives (5.9). For time-dependent

f we have dπtf = πt(
df
dt (t, ·)) dt + dπtf(t, ·) so that we obtain the additional term πt(

df
dt (t, ·))

in the drift of the dynamics of πtf .

Now we return to the proof of the theorem. We get from (5.8) that

df̂t = Nt−
df

dt
(t,K)dt+ (f(t,K)− πtf) dNt + (1−Nt−)dπtf

Substituting the dynamics of πtf in this equation gives the filter equation (5.7) for the case

without dividends.

Finally, we consider the case with dividend payments. Between dividend dates the dynam-

ics of f̂t can be derived by similar arguments as before. At a dividend date we have, using

Bayesian updating,

πTnf − πTn−f =

∫
R+

πTn−(fϕ(y))− (πTn−f)(πTn−ϕ(y))
πTn−(ϕ(y))

μD(dy, {Tn})
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Finally we show that the filter equation (5.8) the measure μD(dy, dt) can be replaced with

the compensated measure (μD − γD,FM

)(dy, dt), as this helps to identify the semimartingale

decomposition of asset prices. To this, note that for any x ∈ SX it holds that
∫
R+ ϕ(y, x)dy = 1,

as ϕ(·, x) is a probability density. Hence∫
R+

πt(fϕ(y))dy =

∫
SX

π(t, x)f(x)

∫
R+

ϕ(y, x)dy dx+ πN (t)f(N)

∫
R+

ϕ(y,N)dy = πtf,

and we obtain that∫
R+

πt(fϕ(y)) − (πtf)(πtϕ(y))

πtϕ(y)
πtϕ(y) = πtf − πtf = 0 ,

and therefore
∫ t
0

∫
R+

πs(fϕ(y))−(πsf)(πsϕ(y))
πsϕ(y)

γD,FM

(dy, ds) = 0 for all t ≥ 0.

Remark 5.5. Alternatively, one can derive the filter equations using the innovations approach

to nonlinear filtering. For this one has to show first that every FM martingale can be repre-

sented as a sum of stochastic integrals with respect to the processes Nt − Λt∧τ and MZ,FM

t ,

and with respect to the random measure measure μD − γD,FM

. Standard arguments can then

be used to identify the integrands in the martingale representation of f̂t −
∫ t
0 (L̂Xf)sds. This

is the route taken in Cetin (2012) for the case without dividend payments.

Finally we may use Theorem 5.3 to derive the dynamics of the corporate securities intro-

duced in Section 3. We concentrate on the equity value; analogous formulas can be written

down for the survival claim and the payment-at-default claim. Denote by St = (ĥeq)t the

equity value of the firm at time t where heq is given in (3.8). Since heq(K) = 0 and since

moreover LXh
eq(v) = rheq(v)− δ̄λDv, we get from Theorem 5.3 that

dSt = (1−Nt−)
{
(rŜt − δ̄λDV̂t)dt+ (ĥeqa�)t − Stâ

�
t dM

Z,FM

t − Ŝt− d(Nt − λtdt)

+

∫
R+

( ̂heqϕ(y))t− − St−(ϕ̂(y))t−
(ϕ̂(y))t−

(μD − γD,FM

)(dy, dt)
}
.

(5.12)

There are a number of interesting observations to make from equation (5.12). First, the stock

price dynamics are of jump-diffusion type, and markedly different from geometric Brownian

motion. Moreover, the processes driving the stock price dynamics (the Brownian motion

MZ,FM

, the compensated random measure (μD − γD,FM

)(dy, dt) and the compensated default

indicator process Nt −
∫ t∧τ
0 λs ds) are directly related to the arrival of information on the

market. Hence the equation formalizes the idea that stock prices are driven by the arrival of

new information on the value of the underlying firm.

6 Derivative Pricing

In this section we discuss the pricing of derivative securities in our setup. The pricing of basic

corporate securities with FN ∨ FD-adapted payoff stream such as equity and debt has been

discussed in Section 3. Here we therefore give some general results on the structure of prices

of options on basic corporate securities, that is securities whose payoff depends on the price

of traded basic securities. Examples for such products include equity and bond options or

convertible bonds.
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We begin with a general result on the pricing of a survival claim with payoff 1{τ>T}H for

some FZ
T ∨FD

T measurable random variable H. The result shows that the pricing of this claim

can be reduced to the problem of computing a conditional expectation with respect to the

reference measure Q∗ and the background filtration FZ
t ∨ FD

t .

Proposition 6.1. Consider some integrable, FZ
T ∨FD

T measurable random variable H. Then

it holds for t ≤ T that

EQ
(
1{τ>T}H | FM

t

)
= 1{τ>t}

EQ∗(
H

(
(u(T ), 1)SX + νN (T )

) | FZ
t ∨ FD

t

)
(u(t), 1)SX + νN (t)

. (6.1)

Proof. As in the proof of Theorem 5.1 we let Ft = Q(τ ≤ t | FZ
t ∨FD

t ). Then the Dellacherie-

formula gives

EQ
(
1{τ>T}H | FM

t

)
= 1{τ>t}

EQ
(
(1− FT )H | FZ

t ∨ FD
t

)
1− Ft

. (6.2)

Moreover, using (5.2) and (5.3) we have for s ∈ {t, T} that

1− Fs =
((
u(s), 1

)
SX + νN (s)

) dQ∗

dQ
|FZ

s ∨FD
s
.

Substituting this relation into (6.2) gives

EQ
(
1{τ>T}H | FM

t

)
= 1{τ>t}

EQ
((

(u(T ), 1)SX + νN (T )
)dQ∗

dQ |FZ
T ∨FD

T
H | FZ

t ∨ FD
t

)
(
(u(t), 1)SX + νN (t)

)dQ∗
dQ |FZ

t ∨FD
t

,

and this is equal to (6.1) by the abstract Bayes formula.

Next we specialize this general result to options on traded basic corporate securities. From

now on we ignore the point mass νN (t) at the upper boundary of SX . Consider for concreteness

an option on the stock price of the firm with maturity T and payoff H = g(ST ). We get for

the price of this claim that

ΠH
t = EQ

(
e−r(T−t)1{τ>T}g(ST ) | FM

t

)
+ e−r(T−t)g(0)Q(τ ≤ T ).

The computation of the default probability Q(τ ≤ T ) has been discussed in detail in Section 3,

so that we concentrate on the first term. Using Proposition 6.1 and the fact that ST =

(u(T ), heq)SX

/
(u(T ), 1)SX we get that this term equals

1{τ>t}
1

(u(t), 1)SX

EQ∗(
g
( (u(T ), heq)SX

(u(T ), 1)SX

)
(u(T ), 1)SX | FZ

t ∨ FD
t

)
. (6.3)

Now standard results on the Markov property of solutions of SPDEs such as Theorem 9.30

of Peszat and Zabczyk (2007) imply that under Q∗ the solution u(t) of the SPDE (4.23) is a

Markov process. Hence

EQ∗(
g
( (u(T ), heq)SX

(u(T ), 1)SX

)
(u(T ), 1)SX | FZ

t ∨ FD
t

)
= C̃(t, u(t)) (6.4)

for some function C̃(t, u(t)) of time and of the current value of the unnormalized filter density.

Moreover, since the the SPDE (4.23) is linear, C̃ is homogeneous of degree zero in u. Hence we
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may without loss of generality replace u(t) by the current filter density π(t) = u(t)
/
(u(t), 1)SX ,

and we get EQ
(
e−r(T−t)1{τ>T}g(ST ) | FM

t

)
= 1{τ>t}C(t, π(t)) where

C(t, π) = EQ∗(
g
( (u(T ), heq))SX

(u(T ), 1)SX

)
(u(T ), 1)SX | u(t) = π

)
. (6.5)

The actual computation of C is best done using Monte Carlo simulation, using a numerical

method to solve the SPDE (4.23). The Galerkin approximation described in Section 4.4 is

particularly well-suited for this purpose since most of the time-consuming computational steps

can be done off-line. Note that (6.5) is an expectation with respect to the reference measure

Q∗. Hence one needs to sample from the SDE (4.23) under Q∗, that is the driving process Z

is a Brownian motion and the random measure μD has compensator γD,∗. Alternatively, one

might evaluate directly the expected value EQ
(
e−r(T−t)1{τ>T}g(ST ) | FM

t

)
, using a simulation

approach sketched in Section 7 below.

Remark 6.2 (Factor structure). Equation 6.5 shows that the price of all securities at time t is

given by a function of the current filter density π(t) = u(t)/(u(t, 1)SX . Since u(t) is moreover

a Markov process the model has factor structure with infinite-dimensional factor process u(t).

Remark 6.3 (Model calibration). The fact that pricing formulas depend on the current filter

density π(t) raises the issue of model calibration. As explained earlier, we view the process Z

generating FM as abstract source of information so that the density process π(t) is not directly

observable for investors. On the other hand, pricing formulas need to be evaluated using only

publicly available information. Hence we have to back out (an estimate of) π(t) from prices

of traded basic corporate securities at time t. A crucial observation in this context is the

fact that the prices of traded basic corporate securities are linear functions of π(t), so that

model calibration leads to optimization problems with linear constraints. In order to make this

more explicit, we assume that a Galerkin approximation of the form π(m)(t) =
∑m

i=1 ψiei with

nonnegative basis functions e1, . . . , em is used to approximate the filter density π(t). Assume

that we observe prices Π∗
1, . . . ,Π

∗
	 of � basic corporate securities with full information value

hl(t, v), 1 ≤ l ≤ �. In order to match the observed prices perfectly, the Fourier coefficients

ψ1, . . . , ψm need to satisfy the following �+ 1 linear constraints

m∑
i=1

ψi(ei, 1)SX = 1, and

m∑
i=1

ψi

(
ei, hl(t, ·)

)
SX = Π∗

l , 1 ≤ l ≤ � .

Calibration problems of this type have been analyzed in detail in the literature on implied

copula models for CDO pricing, and we refer to Hull and White (2006) and Frey and Schmidt

(2012) for further information.

There are good theoretical reasons to expect that the model calibrates well to a given term

structure of defaultable bond spreads, or, equivalently to a given term structure of survival

probabilities Q(τ > s), 0 ≤ s ≤ T . In fact, Davis and Pistorius (2013) have shown analytically

that the initial distribution π0 can be chosen in such a way that τ has an exponential distri-

bution. In Davis and Pistorius (2013) the exponential distribution has been chosen mainly for

analytical convenience, so that one should have good calibration properties for other survival

distributions as well. A detailed numerical analysis of model calibration is deferred to future

research.
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K r λD σ (vol of GBM) initial filter distribution π0
20 0.02 1 0.2 displaced lognormal, V −K ∼ LN(ln 15, 0.2)

Table 1: Parameters used in simulation study.

7 Numerical Experiments

In this section we illustrate the model with a number of numerical experiments. We are

particularly interested in the impact of the noisy asset information FZ on the asset price

dynamics under incomplete information.

We use the following setup for our analysis: Dividends are paid annually; the dividend

size is modelled as dn = δnVtn where δn is lognormal with mean δ̄ = 1%. The noisy asset

information Z is two-dimensional with a1(v) = c1 ln v and a2(v) = c2
(
lnK + σ − ln v)+; for

c2 > 0 this choice of a2 models the idea that the market obtains additional information on

the asset value of the firm as soon as the asset value is less than one standard deviation away

from the default boundary, perhaps because of the firm is monitored particularly closely in

that case. The remaining parameters are given in in Table 1.

In order to generate a trajectory of the filter density π(t) with initial value π0 and related

quantities such as the stock price St we proceed according to the following steps.

1. Generate a random variable V ∼ π0, a trajectory (Vs)
T
s=0 of the asset value process

with initial value V0 = V and the associated trajectory (Ns)
T
s=0 of the default indicator

process.

2. Generate realizations (Ds)
T
s=0 and (Zs)

T
s=0 of the cumulative dividend process and of

the noisy asset information, using the trajectory of the asset value process generated in

Step 1 as input.

3. Compute for the observation generated in Step 2 a trajectory (u(s))Ts=0 of the un-

normalized filter density with initial value u(0) = π0, using the Galerkin approxima-

tion described in Section 4.4. Return π(s) = (1 − Ns)
(
u(s)/(u(s), 1)SX

)
and Ss =

(1−Ns)(π(s), h
eq)SX , 0 ≤ s ≤ T .

Details on the numerical methodology are available on request.

Next we describe the results of our numerical experiments. The trajectory of V and of

the corresponding dividend process that is used as input to all filtering experiments is shown

in Figure 1. In Figure 2 we plot a trajectory of the stock price St and of the corresponding

full information value heq(Vt) for the case where the market has only dividend information

(c1 = c2 = 0). This can be viewed as an example of the discrete noisy accounting information

considered in Duffie and Lando (2001). We see that St has very unusual dynamics; in particular

it evolves deterministically between dividend dates.

The next graphs use the parameter values c1 = 4 and c2 = 0. They show in particular

that more realistic asset price dynamics can be obtained by introducing the continuous noisy

asset information Zt =
∫ t
0 c1 ln(Vs)ds +Wt. We begin by plotting the evolution of the filter

density in Figure 3. It can be seen that π(t) evolves continuously between dividend dates,

and that the density jumps at a dividend date. Moreover, the mode of π(t) is close to the
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Figure 1: A simulated path of the asset value leading to a default at τ ≈ 6.05(years) and a dividend

realisation for that path. Dividend payments have been multiplied by 100 to make them comparable

in size to the asset value.

default boundary K immediately prior to default. Next we graph the resulting stock price

trajectory St together with the full informatiuon value heq(Vt), see Figure 4. Clearly, for

c1 > 0 St has nonzero volatility between dividend dates. A comparison of the two trajectories

moreover shows that St jumps to zero at the default time τ ; this reflects the fact that the

default time has an intensity under incomplete information so that default comes as a surprise

to the market. The corresponding trajectory of the default intensity λt =
dπ
dx (t,K) is shown in

Figure 5. Note that λt is quite large when V is close to the default boundary K as one would

expect intuitively. Finally we consider the parameter set c1 = 4, c2 = 50; this corresponds

to the situation where the market receives a lot of information on the asset value whenever

V is close to the default boundary. In this scenario default is “almost predictable” and the

model behaves similar to a structural model close to default. This can be seen from Figure 6

where we plot St together with the full information value heq(Vt). Note that now St and the

full information value heq(Vt) are very close immediately before the default; in particular, the

stock price jump at t = τ is very small.
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Figure 2: A simulated path of the full information value heq(Vt) of the stock (dashed line) and of the

stock price St (normal line, label Shat) for c1 = c2 = 0 (only dividend information).

Figure 3: A simulated realisation of the conditional density π(t).
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Figure 4: A simulated path of the full information value heq(Vt) of the stock (dashed line) and of the

stock price St (normal line, label Shat) for c1 = 4, c2 = 0 (noisy asset information).
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Figure 5: A simulated path of the default intensity for for c1 = 4, c2 = 0.
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Figure 6: A simulated path of the full information value heq(Vt) of the stock (dashed line) and of the

stock price St (normal line, label Shat) for c1 = 4, c2 = 50 (close monitoring of V close to the default

boundary).
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A Additional Proofs

Proof of Proposition 4.2. The process Ft = Q(σN ≤ t | Ft), 0 ≤ t ≤ T , is an F-submartingale. Hence

we get, using the first submartingale inequality

Q
(
sup
s≤T

Fs > ε
) ≤ 1

ε
E(F+

T ) =
1

ε
Q(σN ≤ T ),

which gives Statement 1.

The difficulty in the proof of Statement 2 is the fact that we have to compare conditional expecta-

tions with respect to different filtrations. Similarly as in robust filtering, we address this problem using

the Kallianpur Striebel formula (4.9) and the product representation (4.10). For simplicity we ignore

the dividend observation. Let XN = (V N )τ , and put

LN
t (ω1, ω2) = exp

( ∫ t

0

a(XN
s (ω1))

�dZs(ω2)− 1

2

∫ t

0

∣∣a((XN
s )(ω1))

∣∣2 ds)

and define Lt(ω1, ω2) in the same way, but with V τ instead of XN . In view of (4.9) and (4.10) we need

to show that EQ1

(
f(XN

t )LN
t (·, ω2)

)
converges in probability to EQ1

(
f(V τ

t )Lt(·, ω2)
)
on Ω2. Now for

t < σN we have XN
t = V τ

t and hence also LN
t = Lt. This gives∣∣∣EQ1

(
f(XN

t )LN
t (·, ω2)− f(V τ

t )Lt(·, ω2)
)∣∣∣ ≤ EQ1

(
1{σN≤t}(

∣∣f(XN
t )

∣∣LN
t

(·, ω2) +
∣∣f(V τ

t )
∣∣Lt(·, ω2)

))
.

Hence

EQ∗
(∣∣∣EQ1

(
f(XN

t )LN
t (·, ω2)− f(V τ

t )Lt(·, ω2)
)∣∣∣) ≤ EQ∗(

1{σN≤t}LN
t

∣∣f(XN
t )

∣∣)+ EQ∗(
1{σN≤t}Lt

∣∣f(V τ
t )

∣∣)
≤ EQ∗(

1{σN≤t}YtLN
t

)
+ EQ∗(

1{σN≤t}YtLt

)
.

Since the law of the asset value process is the same under Q and Q∗ the last line equals EQ
(
1{σN≤t}Yt

)
+

EQ
(
1{σN≤t}Yt

)
and this converges to zero for N → ∞ by dominated convergence and the assumed inte-

grability of Y . This shows that EQ1
(
f(XN

t )LN
t (·, ω2)

)
converges to EQ1

(
f(V τ

t )Lt(·, ω2)
)
in L1(Ω2,G2, Q2)

and hence also in probability.

Proof of Lemma 4.5. The easiest way to show that E(LT ) = 1 is to condition on the trajectory of

X or, more formally, on ω1. Given ω1, L
1 and L2 are independent and hence EQ∗

(LT (ω1, ·)) =

EQ∗
(L1

T (ω1, ·))EQ∗
(L2

T (ω1, ·)). Now EQ∗
(L1

T (ω1, ·)) = 1 by a standard application of the Novikov-

criterion, so that it suffices to show that EQ∗
(L2

T (ω1, ·)) = 1. Here we get by conditioning on ND
T =∫ T

0

∫
R+ 1μD(dy, ds) (the number of dividend dates up to time T ) that

EQ∗
(L2

T (ω1, ·)) =
∞∑

m=0

P (ND
T = m)EQ∗( m∏

n=1

ϕ(dn, XTn(ω1))

ϕ∗(dn)

)

=

∞∑
m=0

P (ND
T = m)

m∏
n=1

∫
R+

ϕ(y,XTn(ω1))

ϕ∗(y)
ϕ∗(y) dy .

Note that
∫
R+

ϕ(y,Tn(ω1))
ϕ∗(y) ϕ∗(y)dy =

∫
R+ ϕ(y,XTn(ω1)dy = 1. Hence we get that EQ∗

(L2
T (ω1, ·)) =∑∞

m=0 P (N
D
T = m) = 1.

In order to show that μD(dy, dt) has Q-compensator γD(dy, dt) we use the general Girsanov theorem

(see for instance Protter (2005), Theorem 3.40): it holds that a process M is a Q∗-local martingale if

and only if M̃t =Mt−
∫ t

0
1

Ls−d〈L,M〉s is a Q-local martingale. Consider now some bounded predictable
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function β : [0.T ]×R+ → R and define the Q∗-local martingaleMt =
∫ t

0

∫
R+ β(s, y) (μ

d− γD,∗)(dy, ds).
As M is of finite variation, we get that

[M,L]t =
∑
s≤t

ΔMsΔLs =

∫ t

0

∫
R+

Ls−
(ϕ(y,Xs)

ϕ∗(y)
− 1

)
β(s, y)μD(dy, ds).

It follows that

〈M,L〉t =
∫ t

0

∫
R+

Ls−
(ϕ(y,Xs)

ϕ∗(y)
− 1

)
β(s, y)γD,∗(ds, dy) =

∫ t

0

∫
R+

Ls−
(
ϕ(y,Xs)− ϕ∗(y)

)
β(s, y) dyλDds.

Recall that γD(dy, dt) = ϕ(y,Xt)dy λ
Ddt. Hence we get that

M̃t :=Mt −
∫ t

0

1

Ls−d〈L,M〉s =
∫ t

0

∫
R+

β(s, y)(μD − γD)(dy, ds) .

Now M̃ is a local martingale by the general Girsanov theorem, which shows that γD(dy, dt) is in fact

the Q-compensator of μD. The other claims are clear.
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