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Abstract

Interest rates are very persistent. Modelling the persistent component of interest
rates has important consequences for forecasting. Consider A¢ ne Term Structure
Models (ATSM): given the dynamics of the short term rate, a stationary VAR for the
factors is used to project the entire term structure. No explanatory variable included
in ATSM model is designed to capture the persistent component of spot rates. This
omission can explain the disappointing forecasting performance of ATSM models. This
paper relates the common persistent component of the US term structure of interest
rates to the age composition of population. Demographics determines the equilibrium
rate in the monetary policy rule and therefore the persistent component in one-period
yields. Fluctuations in demographics are then transmitted to the whole term structure
via the expected policy rate components. We build an a¢ ne term structure model
(ATSM) which exploits demographic information to capture the dynamics of yields
and produce useful forecasts of bond yields and excess returns that provides economic
value for long-term investors.
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1 Introduction

Recent evidence shows that the behavior of interest rates is consistent with the

decomposition of spot rates in the sum of two processes, (i) a very persistent long term

expected value and (ii) a mean-reverting component (Fama, 2006; Cieslak and Povala,

2013). Traditionally, models of the term structure concentrate mainly on the mean-reverting

component as only stationary variables are used to determine yields. Partial adjustments to

equilibrium yields are then used to rationalize the persistence in observed data (see Figure

1). This paper o¤ers a novel interpretation for the persistent long-term component of interest

rates by relating it to the age structure of the US population.

Modelling the persistent component of interest rates has important consequences for

forecasting. Consider A¢ ne Term Structure Models (ATSM). In this framework, given the

dynamics of the short term rate, a stationary VAR representation for the factors is used to

project the entire term structure. The risk premia are identi�ed by posing a linear (a¢ ne)

relation between the price of risk and the factors. In this case the no-arbitrage assumption

allows to pin down the dynamics of the entire term structure by imposing a cross-equation

restrictions structure between the coe¢ cients of the state model (the VAR for the factors)

and the measurement equations that maps the factors in the yields at di¤erent maturities

(Ang, Dong and Piazzesi, 2007; Dewachter and Lyrio, 2006). The potential problem with

this general structure is that while yields contain a persistent component, the state evolves as

a stationary VAR which is designed to model a mean-reverting process and cannot capture

the time series behavior of persistent variables. This discrepancy might therefore explain

the, somewhat disappointingly, mixed results from the forecasting performance of a¢ ne

term structure models (Du¤ee, 2002; Favero, Niu and Sala, 2011; Sarno, Schneider and

Wagner, 2014). Enlarging the information set by explicitly considering a large number of

macroeconomic variables as factors (Moench, 2008) has generated some clear improvement

without addressing the discrepancy between the stationarity of the factors and the high

persistence of interests rates. In fact, forecasting interest rates in the presence of a highly
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persistent component in rates requires the existence of a factor capable of modeling the

persistence.

To explicitly address this problem we argue that when the monetary policy authorities

set the policy rate, they do not react only to cyclical swings re�ected in the transitory

(expected) variations of output from its potential level and of (expected) in�ation from its

target, but also consider the slowly evolving changes in the economy, i.e., trends, which

take place at lower frequency (see, for example, Bernanke, 2006).1 In particular, the target

for the policy rate is set by implicitly taking into account the life-cycle savings behavior

of the population to determine the equilibrium policy rate. Linking the target policy rates

to demographics makes Taylor-type rule of monetary policy capable of generating observed

persistence in interest rates (Diebold and Li, 2005; Diebold and Rudebush, 2013).2

Yields at di¤erent maturities depend on the sum of short rate expectations and the risk

premium. While it is less plausible to consider the risk premium as a non-mean reverting

component (e.g., Dai and Singleton, 2002), the presence of a persistent component related to

demographics can be rationalized in terms of smooth adjustments in short-rate expectations

that take decades to unfold. In particular, we consider a demographic variable MY, a proxy

for the age structure of the US population originally proposed by Geneakopoulos et al.

(2004) (GMQ from now onwards) and de�ned as the ratio of middle-aged (40-49) to young

(20-29) population in the US as the relevant demographic variable to determine the persistent

component of interest rates.3

First, we illustrate our permanent-transitory decomposition using demographic

1"... adequate preparation for the coming demographic transition may well involve signi�cant adjustments
in our patterns of consumption, work e¤ort, and saving ..." Chairman Ben S. Bernanke, Before The
Washington Economic Club, Washington, D.C.,October 4, 2006.

2When young adults, who are net borrowers, and the retired, who are dissavers, dominate the economy,
savings decline and interest rates rise. The idea, is certainly not a new one as it can be traced in the work
of Wicksell (1936), Keynes (1936), Modigliani and Brumberg (1954), but it has received relatively little
attention in the recent literature.

3In principle there are many alternative choices for the demographic variable, MY. However, using a
proxy derived from a model is consistent with economic theory (Giacomini and Ragusa, 2014) and reduces
the risk of a choice driven by data-mining. Importantly, MY is meant to capture the relative weights of
active savers investing in �nancial markets.
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information. Then we propose an a¢ ne term structure model (ATSM) which parsimoniously

incorporates demographic channel in one-period yield via the central bank reaction function

and all yields at longer maturities as the sum of future expected policy rates and the term

premium. The advantage of an ATSM is that the term premia are explicitly modeled

using both observable and unobservable factors.4 This framework provides a the natural

complement to the Taylor rule. In this speci�cation, given the dynamics of the short

term rate, a stationary VAR representation for the factors is used to project the entire

term structure. We show that the demographic ATSM not only provides improved yield

forecasts with respect to traditional benchmarks considering statistical accuracy (Carriero

and Giacomini, 2011), but it also provides economic gains for long term investors in the

context of portfolio allocation (Sarno et al., 2014; Gargano, Pettenuzzo and Timmermann,

2014).

To our knowledge, the potential relation between demographics and the target policy

rate in a reaction function has never been explored in the literature. This analysis is relevant

for two reasons. First, the persistence of policy rates cannot be modeled by the mainstream

approach to central bank reaction functions that relate monetary policy exclusively to cyclical

variables. Second, putting term structure model at work to relate the policy rate to all other

yields requires very long term projections for policy rates. For example, in a monthly model,

120 step ahead predictions of the one-month rate are needed to generate the ten-year yield.

However, long-term projections are feasible in a speci�cation where the persistent component

of the policy rates is modelled via demographics while macroeconomic factors capture the

cyclical �uctuations. For instance, a standard VAR could be used to project the stationary

component, while the permanent component is projected by exploiting the exogeneity of the

demographic variable and its high predictability even for a very long-horizon.5

4The literature is vast, few related examples are Ang and Piazzesi (2003), Diebold, Rudebusch, and
Aruoba (2005), Gallmeyer, Holli�eld, and Zin, (2005), Hordahl, Tristani, and Vestin (2006), Rudebusch and
Wu (2008), Bekaert, Cho, and Moreno (2010).

5The Bureau of Census currently publishes on its website projections for the age structure of the
population with a forecasting horizon up to �fty years ahead.
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The trend-cycle decomposition of interest rates has been also recently investigated

by Fama (2006) and Cieslak and Povala (2013), who argue that the predictive power

of the forward rates for yields at di¤erent maturities could be related to the capability

of appropriate transformations of the forward rates to capture deviations of yields from

their permanent component. These authors propose time-series based on backward looking

empirical measures of the persistent component; in particular Fama (2006) considers a

�ve-year backward looking moving average of past interest rates and Cieslak and Povala

(2013) consider a ten-year discounted backward-looking moving average of annual core CPI

in�ation. We propose instead a forward looking measure for which reliable forecasts are

available for all the relevant horizons. Figure 2 illustrates the existence of a persistent

component in interest rates by relating it to di¤erent measures of slowly evolving trends.

The Figure reports the yield to maturity of one-Year US Treasury bond, along with the

persistent components as identi�ed by Fama (2006) and Cieslak and Povala (2013), and the

demographic variable, MY.

The Figure shows that MY not only strongly co-moves with the alternative estimates

of the persistent component, but it is also capable of matching exactly the observed peak in

yields at the beginning of the eighties. The very persistent component of yields is common

to the entire term structure of interest rates: Figure 1 illustrates this point by reporting the

US nominal interest rates at di¤erent maturities. The visual evidence reported in Figures

1-2 motivates the formal investigation of the relative properties of the di¤erent observable

counterparts for the unobservable persistent component of the term structure.

Our framework brings together four di¤erent strands of the literature: i) the one

analyzing the implications of a persistent component on spot rates predictability, ii) the

one linking demographic �uctuations with asset prices, iii) the empirical literature modeling

central bank reaction functions using the rule originally proposed by Taylor (1993) and iv)

the term structure models with observable macro factors and latent variables.

The literature on spot rates predictability has emerged from a view in which
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forecastability is determined by the slowly mean-reverting nature of the relevant process.

Recently, it moved to a consensus that modeling a persistent component is a necessary

requirement for a good predictive performance (Bali, Heidari and Wu, 2009; Du¤ee, 2012).

Early literature attributes this predictability to the mean reversion of the spot rate toward

a constant expected value. This view has been recently challenged; the predictability of

the spot rate captured by forward rates is either attributed to a slowly moving, yet still

stationary, mean (Balduzzi, Das, and Foresi, 1998) or to the reversion of spot rates towards

a time-varying very persistent long-term expected value (Fama, 2006; Cieslak and Povala,

2013).6

Our choice of the variable determining the persistent component in short term rate

is funded in the literature linking demographic �uctuations with asset prices and in the

empirical approach to central bank reaction functions based on Taylor�s rule. Taylor rule

models policy rates as depending on a long term equilibrium rate and cyclical �uctuations

in (expected) output and in�ation. The long term equilibrium rate is the sum of two

components: the equilibrium real rate and equilibrium in�ation, which is the (implicit)

in�ation target of the central bank. Evans (2003) shows that over longer horizons,

expectation of the nominal and real yields rather than the in�ation expectations dominate

in the term structure. The long-term equilibrium is traditionally modeled as a constant.

However, Woodford (2001) highlights the importance of a time-varying constant in the

feedback rule to avoid excess interest rate volatility while stabilizing in�ation and output

gap. This paper allows for a time-varying target for the equilibrium policy rate by relating it

to the age structure of population. The use of a demographic variable allows us to explicitly

model the change of regime in the spot rate proving a natural alternative to regime-switching

speci�cations (for example, Gray, 1996; Ang and Bekaert, 2002).

The idea of using demographics to determine the persistent component of the whole term

6There are other alternative views in the literature which argue for a unit root in the spot rates (De
Wachter and Lyrio, 2006; Christensen, Diebold and Rudebusch, 2011) or suggest a near unit root process
to model the persistent component (Cochrane and Piazzesi, 2008; Jardet, Monfort and Pegoraro, 2011;
Osterrieder and Schotman, 2012).
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structure complements the existing literature that uses demography as an important variable

to determine the long-run behavior of �nancial markets (Abel, 2001). While the literature

agrees on the life-cycle hypothesis7 as a valid starting point, there is disagreement on the

correct empirical speci�cation and thus the magnitude of demographic e¤ects (Poterba, 2001;

Goyal, 2004). Substantial evidence is available on the impact of the demographic structure

of the population on long-run stock-market returns (Ang and Maddaloni, 2005; Bakshi and

Chen, 1994; Goyal, 2004; Della Vigna and Pollet, 2007). However, the study of the empirical

relation between demographics and the bond market is much more limited, despite the

strong interest for comovements between the stock and the bond markets (Lander et al.,

1997; Campbell and Vuoltenaho, 2004; Bekaert and Engstrom, 2010).

GMQ (2004) consider an overlapping generation model in which the demographic

structure mimics the pattern of live births in the U.S., that have featured alternating

twenty-year periods of boom and busts. They conjecture that the life-cycle portfolio behavior

(Bakshi and Chen, 1994) plays an important role in determining equilibrium asset prices.

Consumption smoothing by the agents, given the assumed demographic structure requires

that when the MY ratio is small (large), there will be excess demand for consumption

(saving) by a large cohort of retirees (middle-aged) and for the market to clear, equilibrium

prices of �nancial assets should adjust, i.e., decrease (increase), so that saving (consumption)

is encouraged for the middle-aged (young). The model predicts that the price of all

�nancial assets should be positively related to MY and it therefore also predicts the negative

correlation between yields and MY. Note that we use the results of the GMQ model to

rationalize the target for policy rate at generational frequency, in this framework there is no

particular reason why the ratio of middle-aged to young population should be directly linked

to aggregate risk aversion.8 Following this intuition, we take a di¤erent approach from the

available literature that studies the relationship between real bond prices and demographics

7Life cycle investment hypothesis suggests that agents should borrow when young, invest for retirement
when middle-aged, and live o¤ their investment once they are retired.

8Recent literature also shows that consumption smoothing across time rather than the risk management
across states is the primary concern of the households (Rampini and Viswanathan, 2014).
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through the impact on time-varying risk (Brooks, 1998; Bergantino, 1998; Davis and Li,

2003).

We concentrate on the relation between equilibrium real interest rate and the

demographic structure of population as we consider the target in�ation rate as set by

an independent central bank who is not in�uenced by the preferences of the population.

However, a possible relation between the preference of the population and in�ation has

been investigated in other studies (Lindh and Malberg, 2000, Gozluklu and Morin, 2014)

which show evidence on the existence of an age pattern of in�ation e¤ects. Our approach is

consistent with McMillan and Baesel (1988) who analyze the forecasting ability of a slightly

di¤erent demographic variable, prime savers over the rest of the population. Our work is

also related to Malmendier and Nagel (2013), who show that an aggregate measure that

summarizes the average life-time in�ation experiences of individuals at a given point in time

is useful in predicting excess returns on long-term bonds.

Our approach to monetary policy rule has an important di¤erence from the one adopted

in the monetary policy literature. In this literature monetary policy has been described by

empirical rules in which the policy rate �uctuates around a constant long-run equilibrium

rate as the central bank reacts to deviations of in�ation from a target and to a measure of

economic activity usually represented by the output gap. The informational and operational

lags that a¤ect monetary policy (Svensson, 1997) and the objective of relying upon a robust

mechanism to achieve macroeconomic stability (Evans and Honkapohja, 2003), justify a

reaction of current monetary policy to future expected values of macroeconomic targets.

As the output-gap and the in�ation-gap are stationary variables, this framework per se is

not capable of accommodating the presence of the persistent component in policy rates.

One outstanding empirical feature of estimated policy rules is the high degree of monetary

policy gradualism, as measured by the persistence of policy rates and their slow adjustment

to the equilibrium values determined by the monetary policy targets (Clarida et al., 2000;

Woodford, 2003). Rudebusch (2002) and Soderlind et al. (2005) have argued that the degree
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of policy inertia delivered by the estimation of Taylor-type rules is heavily upward biased. In

fact, the estimated degree of persistence would imply a large amount of forecastable variation

in monetary policy rates at horizons of more than a quarter, a prediction that is clearly

contradicted by the empirical evidence from the term structure of interest rates.9 Rudebusch

(2002) relates the "illusion" of monetary policy inertia to the possibility that estimated policy

rules re�ect some persistent shocks that central banks face. The introduction of demographics

allows to model this persistent component of the policy rate as the time-varying equilibrium

interest rate is determined by the age-structure of the population.

We shall implement the formal investigation in four stages. First, we illustrate the

potential of the temporary-permanent decomposition to explain �uctuations of the term

structure using the demographic information. Second, we introduce a formal representation

of our simple framework, by estimating a full a¢ ne term structure model with time varying

risk premium. Third, we run a horse-race analysis between a random walk benchmark,

standard Macro ATSM and proposed ATSM with demographic information. We consider

several measures of statistical accuracy and economic value for di¤erent investment horizon.

Fourth, we investigate the relative performance of MY and other backward looking measures

proposed in the literature to model the persistent component of interest rates. Finally, after

assessing the robustness of our empirical �ndings, the last section concludes.

2 Demographics and the Structure of Yield Curve

We motivate our analysis with a simple framework, in which the yield to maturity of

the 1-period bond, y(1)t ; is determined by the action of the monetary policy maker and all

the other yields on n-period (zero-coupon) bonds can be expressed as the sum of average

9In a nutshell, high policy inertia should determine high predictability of the short-term interest rates,
even after controlling for macroeconomic uncertainty related to the determinants of the central bank reaction
function. This is not in line with the empirical evidence based on forward rates, future rates (in particular
federal funds futures) and VAR models.

9



expected future short rates and the term premium, rpy(n)t :

y
(n)
t =

1

n

n�1X
i=0

Et[y
(1)
t+i j It] + rpy

(n)
t (1)

y
(1)
t = y�t + �(Et�t;k � ��) + Etxt;q + u1;t+1

In setting the policy rates, the Fed reacts to variables at di¤erent frequencies. At the

high frequency the policy maker reacts to cyclical swings re�ected in the output gap, xt;q;

i.e., transitory discrepancies of output from its potential level, and in deviation of in�ation,

�t;k; from the implicit target of the monetary authority. Monetary policy shocks, u1;t+1;also

happen. As monetary policy impacts on macroeconomic variable with lags, the relevant

variables to determine the current policy rate are k-period ahead expected in�ation and

q-period ahead expected output gap. However, cyclical swings are not all that matter to set

policy rates. We posit that the monetary policy maker determines the equilibrium level of

interest rates y�t (which is determined by the sum of a time varying real interest rate target

and the in�ation target ��) accordingly to the slowly evolving changes in the economy that

take place at a generational frequency, i.e., those spanning several decades. We relate this to

the age structure of population, MYt as it determines savings behavior of middle-aged and

young population.

The relation between the age structure of population and the equilibrium real interest

rate is derived by GMQ in a three-period overlapping generation model in which the

demographic structure mimics the pattern of live births in the US. Live births in the US have

featured alternating twenty-year periods of boom and busts. Let qo (qe) be the bond price

and {coy,c
o
m,c

o
r} ({c

e
y,c

e
m,c

e
r}) the consumption stream (young, middle, old) in two consecutive

periods, namely odd and even. In the simplest deterministic setup, following the utility
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function over consumption

U(c) = E(u(cy) + �u(cm) + �2u(cr))

u(x) =
x1��

1� � � > 0

The agent born in an odd period then faces the following budget constraint

coy + qec
o
m + qoqec

o
r = w

y + qew
m (2)

and in an even period

cey + qoc
e
m + qoqec

e
r = wy + qow

m (3)

Moreover, in equilibrium the following resource constraint must be satis�ed

Ncoy + nc
o
m +Nc

o
r = Nwy + nwm +D (4)

ncey +Nc
e
m + nc

e
r = nwy +Nwm +D (5)

where D is the aggregate dividend for the investment in �nancial markets.

In this economy an equilibrium with constant real rates is not feasible as it would lead

to excess demand either for consumption and saving. When the MY ratio is small (large),

i.e., an odd (even) period, there will be excess demand for consumption (saving) by a large

cohort of retirees (middle-aged) and for the market to clear, equilibrium prices of �nancial

assets should adjust, i.e., decrease (increase), so that saving (consumption) is encouraged

for the middle-aged. Thus, letting qbt be the price of the bond at time t, in a stationary

equilibrium, the following holds

qbt = qo when period odd

qbt = qe when period even

together with the condition qo < qe. In the absence of risk, the substitutability of bond
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and equity together with the no-arbitrage condition implies that

1

qbt
= 1 + yt =

D + qet+1
qet

where qet is the real price of equity and t 2 fodd; eveng:

So, since the bond prices alternate between qbo and q
b
e, then the price of equity must also

alternate between qet and q
e
t : Hence the model predicts a positive correlation between real

asset prices and MY, and a negative correlation between MY and (expected) bond yields; in

other words the model implies that a bond issued in odd (even) period and maturing in even

(odd) period o¤ers a high (low) yield, since the demographic structure is characterized by a

small (large) cohort of middle-aged individuals, hence low MY ratio in odd (even) periods.

Therefore, the main prediction of the model is that real interest rates and the dividend

price ratio should �uctuate with the age structure of population. Unfortunately real interest

rates are not observable for most of our sample. In�ation-indexed bonds (TIPS, the Treasury

Income Protected Securities) have traded only since 1997 and the market of these instruments

faced considerable liquidity problem in its early days. Ang, Bekaert and Wei (2008) have

solved the identi�cation problem of estimating two unobservables, real rates and in�ation

risk premia, from only nominal yields by using a no-arbitrage term structure model that

imposes restrictions on the nominal yields. These pricing restrictions identify the dynamics

of real rates (and the in�ation risk premia). We report in �rst panel of Figure 3 the time

series behavior of the 5-year real rate identi�ed by Ang, Bekaert and Wei (2008) together

with MY. In the second panel we consider instead MY and the dividend price ratio which

is the readily observable stock market variable predicted to comove with demographics by

the GMQ model. Both panels in Figure 3 illustrate that the co-movement between the (log

of) dividend price ratio and 5-year real rates with MY cannot falsify the predictions of the

GMQ model.10

10The implications of this evidence for stock market predictability are further investigated in Favero,
Gozluklu and Tamoni (2011).
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Consistently with the GMQ model we consider the following permanent-transitory

decomposition for the 1-period policy rates:

y
(1)
t = P

(1)
t + C

(1)
t = �0 + �1MYt + �2Xt

P
(1)
t � �0 + �1MYt = y�t
C
(1)
t � �(Et�t;k � ��) + Etxt;q + u1;t+1 = �2Xt

and, assuming that the in�ation gap and the output gap can be represented as a

stationary VAR process, yields at longer maturity can be written as follows

y
(n)
t = �0 +

1

n

n�1X
i=0

�1MYt+i + b
(n)Xt + rpy

(n)
t (6)

y
(n)
t = P

(n)
t + C

(n)
t

P
(n)
t = �0 +

1

n

n�1X
i=0

�1MYt+i

C
(n)
t = b(n)Xt + rpy

(n)
t

The decomposition of yields to maturity in a persistent component, re�ecting

demographics, and a cyclical components re�ecting macroeconomic �uctuations and the risk

premia, is consistent with the all the stylized facts reported so far documenting the presence

of a slow moving component common to the entire term structure. Moreover, the relation

between the permanent component and the demographic variable is especially appealing for

forecasting purposes as the demographic variable is exogenous and highly predictable even

for very long-horizons. No additional statistical model for MYt+i is needed to make the

simple model operational for forecasting, as the bureau of Census projections can be readily

used for this variable, as it can be safely considered strongly exogenous for the estimation

and the simulation of the model to our interest.
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3 An ATSM with Demographics

We now propose an ATSM which parsimoniously incorporates demographic channel

in one-period yield via the central bank reaction function and models all yields at longer

maturities as the sum of future expected policy rates and the term premium. Hence we

consider the role of demographics within a more structured speci�cation that explicitly

incorporates term premia. In particular, we estimate the following Demographic ATSM:

y
(n)
t = � 1

n
(An +B

0
nXt + �nMY

n
t ) + "t;t+1 "t;t+n � N(0; �2n) (7)

y
(1)
t = �0 + �

0
1Xt + �2MYt

Xt = �+ �Xt�1 + �t �t � i:i:d:N(0;
)

where �n =
�
n0 , 

n
1 � � � ; nn�1

�
, and MYnt = [MYt;MYt+1 � � � ;MYt+n�1]0, y(n)t denotes

the yield at time t of a zero-coupon government bond maturing at time t + n, the vector

of the states Xt = [f
o
t ; f

u
t ] , where f

o
t = [f

�
t ; f

x
t ] are two observable factors extracted from

large-data sets to project the in�ation and output gap using all relevant output and in�ation

information which the Fed uses to set the monetary policy rate in a data-rich environment

(Bernanke and Boivin (2003), Ang, Dong and Piazzesi (2005), while fut =
�
fu;1t ; fu;2t ; fu;3t

�
contain unobservable factor(s) capturing �uctuations in the unobservable interest rate target

of the Fed orthogonal to the demographics �uctuations, or interest rate-smoothing in the

monetary policy maker behavior. Consistently with the previous section and recent literature

(e.g., Ang and Piazzesi, 2003; Huang and Zhi, 2012 ;Barillas, 2013), we extract the two

observable stationary factors from a large macroeconomic dataset following Ludvigson and

Ng (2009) to capture output and in�ation information (see Appendix B).

Our speci�cation for the one period-yield is a generalized Taylor rule in which the

long-term equilibrium rate is related to the demographic structure of the population, while

the cyclical �uctuations are mainly driven by the output gap and �uctuations of in�ation

around the implicit central bank target. Note that in our speci�cation the permanent
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component of the 1-period rate is modelled via the demographic variable and the vector

of the states Xt is used to capture only cyclical �uctuations in interest rates. Hence, it is

very natural to use a stationary VAR representation for the states that allows to generate

long-term forecasts for the factors and to map them into yields forecasts. MYt is not included

in the VAR as reliable forecasts for this exogenous variable up to very long-horizon are

promptly available from the Bureau of Census. The model is completed by assuming a

linear (a¢ ne) relation between the price of risk, �t;and the statesXt by specifying the pricing

kernel, mt+1, consistently and by imposing no-arbitrage restrictions (see, for example, Du¢ e

and Kan (1996), Ang and Piazzesi (2003)). We solve the coe¢ cients An+1, B0n+1 and �n+1

recursively (see Appendix A). We study the modi�ed a¢ ne term structure model in assuming

the more general case of time varying risk premium, i.e. the market prices of risk are a¢ ne

in �ve state variables �0 =
�
��0 �x0 �u;10 �u;20 �u;30

�
where �0 is a non-zero vector and

�1 is a diagonal matrix;

�t = �0 + �1Xt

mt+1 = exp(�yt;t+1 �
1

2
�0t
�t � �t"t+1)

An+1 = An +B
0
n (�� 
�0) + 1

2
B0n
Bn + A1

B0n+1 = B
0
n (�� 
�1) +B01

�n+1 = [��2;�n]

Note that the imposition of no-arbitrage restrictions allows to model the impact of

current and future demographic variables on the term structure in a very parsimonious

way, as all the e¤ects on the term structure of demographics depend exclusively on one

parameter: �2: Our structure encompasses traditional ATSM with macroeconomic factors,

and no demographic variable, labelled as Macro ATSM, as this speci�cation is obtained by

setting �2 = 0: In other words, the traditional Macro ATSM, which omits the demographic

variable, is a restricted version of the more general Demographic ATSM. The no arbitrage
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restrictions guarantees that when �2 = 0 also �n = 0 : as demographics enter the speci�cation

of yields at longer maturities only via the expected one-period yield, the dynamics of yields at

all maturities become independent from demographics if MYt does not a¤ect the one-period

policy rate. However, when the restriction �2 = 0 is imposed, the structure faces the

problem highlighted in the previous section of having no structural framework for capturing

the persistence in policy rates. In fact, to match persistence in the policy rates, some of

the unobservable factors must be persistent as the observable factors are, by construction,

stationary. Then, the VAR for the state will include a persistent component which will

make the long-term forecasts of policy rates, necessary to model the long-end of the yield

curve, highly uncertain and unreliable. In the limit case of a non-stationary VAR, long-term

forecast become useless as the model is non-mean reverting and the asymptotic variance

diverges to in�nite.

3.1 Model Speci�cation and Estimation

We estimate the model on quarterly data by considering the 3-month rate as the policy

rate. The properties of the data are summarized in Table 1. The descriptive statistics

reported in Table 1 highlights the persistence of all yields which is not matched by the

persistence of the macroeconomic factors extracted from the large data-set and it is instead

matched by the persistence of the demographic variable MY.

We evaluate the performance of our speci�cation with MY against that of a benchmark

discrete-time ATSM obtained by imposing the restriction �2 = 0 on our speci�cation.

Following the speci�cation analysis of Pericoli and Taboga (2008), we focus on a parsimonious

model including three latent factors and only contemporaneous values of the macro variables.

We use the Chen and Scott�s (1993) methodology; given the set of parameters and observed

yields latent variables are extracted by assuming that number of bonds which are priced

exactly is equal to the number of unobserved variables. Hence we assume that 3-month,

2-year and 5-year bond prices are measured without error and estimate the model with

16



maximum likelihood. We assume the state dynamics to follow a VAR(1). We impose the

following restrictions on our estimation (Favero, Niu and Sala, 2010):

i) the covariance matrix 
 is block diagonal with the block corresponding to the

unobservable yield factor being identity, and the block corresponding to the observable factors

being unrestricted, i.e.


 =

264 
o 0

0 I

375
ii) the loadings on the factors in the short rate equation are positive, 0 � -A1

iii) fu0 = 0:

We �rst estimate the model for the full sample 1964Q1-2013Q4, the estimated results

are reported in Table 2. The results show signi�cant evidence of demographics in the reaction

function. The additional parameter �2 in the Demographic ATSM is highly signi�cant with

the expected negative sign. Moreover, we notice that while the unobservable level factor picks

up the persistence in the Macro ATSM speci�cation, the demographic variable dominates

the level factor which becomes negligible in the Demographic ATSM. This observation

is especially relevant in the context of out-of-sample forecasting. The omission of the

demographic variable results in over�tting of the restricted model. Such a restricted model

may be useful in explaining the in-sample patterns of the data, but does not re�ect the true

data generating process of bond yields (Du¤ee, 2011). We also notice that the estimated

dynamics of the unobservable factors, especially the level factor, is very di¤erent when the

benchmark model is augmented with MY. In fact, in the Macro ATSM model the third

factors is very persistent and the matrix (�� I) describing the long-run properties of the

system is very close to be singular, while this near singularity disappears when the persistent

component of yields at all maturities is captured by the appropriate sum of current and future

age structure of the population. In this case the VAR model for the states becomes clearly

stationary and long-term predictions are more precise and reliable.
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3.2 Out-of-Sample Forecasts

We complement the results of full sample estimation by analyzing the properties of

out-of-sample forecasts of our model at di¤erent horizons. The key challenge facing ATSM

models is that they are good at describing the in-sample yield data and explain bond excess

returns, but often fail to beat even the simplest random walk benchmark, especially in

long horizon forecasts (Du¤ee, 2002; Guidolin and Thornton, 2011; Sarno et al., 2014). In

our multi-period ahead forecast, we choose iterated forecast procedure, where multiple step

ahead forecasts are obtained by iterating the one-step model forward

by(n)t+hjt = ban +bbnX̂t+hjt + b�nMYnt+h
X̂t+hjt =

hX
i=0

�̂ib�+ �̂hX̂t

where ban = � 1
n
bAn;bbn = � 1

n
bBn are obtained by no-arbitrage restrictions. Forecasts are

produced on the basis of rolling estimation with a rolling window of eighty observations.

The �rst sample used for estimation is 1961Q3-1981Q2. We consider 5 forecasting horizons

(denoted by h): one to �ve years. For example, for the one year forecasting horizon, we

provide a total of 126 forecasts for the period 1982Q2 - 2013Q4, while the number of forecasts

reduces to 111 for 5-year ahead forecasts.

Forecasting performance is measured by the ratio of the root mean squared forecast error

(RMSFE) of the Demographic ATSM to the RMSFE of a random walk forecast and to the

RMSFE of the benchmark Macro ATSM without the demographic variable. In parentheses,

we report the p-values of the forecasting test due to Giacomini and White (2006) which is

a two-sided test of the equal predictive ability of two competing forecasts. In addition, we

compute the Clark and West (2006, 2007) test statistics and associated p-values testing the

forecast accuracy of nested models. The additional Clark and West statistics are useful in

evaluation the forecasting performance, because it corrects for �nite sample bias in RMSFE

comparison between nested models. Without the correction, the more parsimonious model

18



might erroneously seem to be a better forecasting model if we only consider the ratio of

RMSFE. Forecasting results from di¤erent models are reported in Table 3. Panel A compares

the forecasts of Demographic ATSM against the random walk benchmark, while Panel B uses

the restricted Macro ATSM (�2 = 0) as the benchmark.

The evidence on statistical accuracy using di¤erent tests shows that the forecasting

performance of the Demographic ATSM dominates the traditional Macro ATSM, especially

in longer horizon starting from 2 years. Including demographic information in term structure

models seems decisive to generate a better forecasting performance. By using an a¢ ne

structure to model time-varying risk one can impose more structure on the yield dynamics

and still improve on the forecasting performance of a simpler model once demographics is

incorporated into the model to project future bond yields. The �nding is striking in light of

earlier evidence from the above cited literature which highlights the di¢ culty of forecasting

future yields using ATSM speci�cation.

In order to demonstrate the importance of a common demographics related component

to explain the common persistent component in the term structure, we conduct the following

dynamic simulation exercise: using the full-sample estimation results, both Macro ATSM and

Demographic ATSM are simulated dynamically from the �rst observation onward to generate

yields at all maturities. The simulated time series in Figure 4 show that, while the model

without demographics converges to the sample mean, the model with demographics feature

projections that have �uctuations consistent with those of the observed yields, except the

recent period of quantitative easing whose start is indicated by the vertical line in 2008Q3.

These simulations con�rm that �tting a persistent level factor does not necessarily result in

accurate out-of-sample forecasts.

3.3 Forecast Usefulness and Economic Value

Out-of-sample forecasting results reported in Table 5 suggest that the random walk

model which does not impose any structure on yield dynamics and risk premium is still a
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valid benchmark, especially for short horizon forecasts up to one year. So, in the context of

out-of-sample forecasting, the question is whether to choose a completely parsimonious model

with no economic structure or a full �edged ATSM speci�cation which models risk dynamics

while capturing the persistence in interest rates via common demographic component. In this

section, we follow the framework proposed by Carriero and Giacomini (2011) which is �exible

enough to allow for forecast combination and assess the usefulness of two competing models,

by both using a statistical and an economic measure of forecast accuracy. In particular, in

the former case given a particular type of loss function, e.g., quadratic loss, the forecaster

�nds the optimal weight ��which minimizes the expected out-of-sample loss of the following

combined forecast

y
(n);�
t+hjt = by(n);RWt+hjt + (1� �)(by(n);DATSMt+hjt � by(n);RWt+hjt )

whereby(n);RWt+hjt (by(n);DATSMt+hjt ) is the h-period ahead yield forecast at time t of the random

walk model (Demographic ATSM) of a bond maturing in n periods.

If estimated �� is close to one, then it suggests that only the random walk models

is useful in forecasting bond yields. If on the other hand estimated �� is close to zero,

than Demographic ATSM model dominates the random walk benchmark in out-of-sample

forecasting. Estimated �� close to 0.5 implies that both models are equally useful in

forecasting. In Table 4 Panel A, we provide estimated ��; and t-statistics t�=0 and t�=1

to test the null hypotheses � = 0 and � = 1, respectively. Results are broadly in line

with the evidence reported in Table 5; while the parsimonious random walk model is useful

for 1-year ahead forecasts, more structured Demographic ATSM provides more useful long

horizon yield forecasts.

So far the evidence is limited to statistical forecast accuracy, but recent literature �nds

that statistical accuracy in forecasting does not necessarily imply economic value in portfolio

choice, especially for bond excess returns (Thornton and Valente, 2012; Sarno et al., 2014;
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Gargano, et al., 2014). Carriero and Giacomini (2011) framework can be extended to �nd

the optimal portfolio weight w� as a function �� by minimizing the utility loss of an investor

with quadratic utility who has to choose among m risky bonds. We implement this test

for 1-year and 2-year holding periods. In the �rst case, m=4, namely the investor chooses

among 2-year to 5-year bonds. In the second case, the investment opportunity set consists

of 3 bonds given the data we use in our forecasting exercise. Let the bond excess returns

(net of 3-month spot rate) be a 4x1 vector, rxt+1 = [rx(2); rx(3); rx(4); rx(5)] in case of 1-year

holding period and a 3x1 vector rxt+2 = [rx(3); rx(4); rx(5)] for 2-year holding period. Given

our yield forecasts we can compute the bond excess returns

rxt+1 = �n y(n)t+1 + (n+ 1)y
(n+1)
t � y(n=4)t

rxt+2 = �n y(n)t+2 + (n+ 2)y
(n+2)
t � y(n=4)t

and using our forecasting models we obtain excess return forecasts

crxt+1 = �n by(n)t+1jt + (n+ 1)y(n+1)t � y(n=4)t

crxt+2 = �n by(n)t+2jt + (n+ 2)y(n+2)t � y(n=4)t

Panel B in Table 4 reports the estimated forecast combination weight ��, and associated

t-statistics t�=0 and t�=1 to test the null hypotheses � = 0 and � = 1, respectively. As before,

we consider the random walk speci�cation as the benchmark model and compare the forecast

combination weight �� of either the Demographic ATSM or Macro ATSM models against

the random walk benchmark. For 1-year holding period, the random walk model clearly

dominates Macro ATSM model in line with earlier evidence. However, the optimal weight is

not statistically di¤erent from 0.5 if we combine the random walk model with Demographic

ATSM, suggesting that both models are equally relevant for an investor with 1-year horizon.

On the other hand, for long term investors it is evident that the Demographic ATSM is the
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only model that is useful for forecasting bond excess returns.

3.4 Long Term Projections

One of the appealing features of the demographic ATSM speci�cation is that the

availability of long-term projections for the age-structure of the population which can be

exploited to produce long-term projections for the yield curve. In our speci�cation, yields

at time t+ j with maturities t+ j + n are functions of all realization of MY between t+ j

and t+ j + n: The exogeneity of the demographic variable and the availability of long term

projections is combined in the a¢ ne model with a parsimonious parameterization generated

by the no-arbitrage restrictions that allow to weight properly all future values of MY with

the estimation of few coe¢ cients. As a result future paths up to 2045 can be generated

for the entire term structure, given the availability of demographic projections up to 2050.11

In Figure 5, we compare the in-sample estimation and out-of-sample forecasts for both the

3-month spot rate and 5-year bond yield. While the in-sample estimation results are very

similar, the long term projections reveal that the Macro ATSM is not able to capture the

persistence in true data generating process. In particular, spot rate forecasts of the Macro

ATSM model immediately converge to the unconditional mean, while it takes approx. 15

years (around 2030) for the Demographic ATSM forecasts to reach the unconditional mean.

4 Alternative Speci�cations of Permanent Component

The existence of a permanent component in spot rates has been identi�ed in the

empirical literature by showing that predictors for return based on forward rates capture

the risk premium and the business cycle variations in short rate expectations. Fama (2006)

explains the evidence that forward rates forecast future spot rates in terms of a mean

reversion of spot rates towards a non-stationary long-term mean, measured by a backward

11The Bureau of Census websites provides projections for demographics variable up to 2050 and the current
5-year yield depends on the values of MY over the next �ve years.
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moving average of spot rates. Cieslak and Povala (2013) explain the standard return

predictor based on the tent-shape function of forward rates proposed by Cochrane-Piazzesi

(2005) as a special case of a forecasting factor constructed from the deviation of yields from

their persistent component. The latter is measured by a discounted moving-average of past

realized core in�ation.

In this section we use the standard framework to assess the capability of MY to capture

the permanent component of spot rates against that of the di¤erent proxies proposed by

Fama (2006) and Cieslak and Povala (2013). This framework is designed to compare the

forecasting ability of the spot rates deviations from their long term expected value and

forward spot spreads. We implement it by taking three di¤erent measures of the permanent

component: our proposed measure based on the age composition of population, the measure

adopted by Fama based on a moving average of spot rates, and the measure proposed by

Cieslak-Povala based on a discounted moving average of past realized core in�ation.

Given the decomposition of the spot interest rates, y(n)t
12 in two processes: a long term

expected value P (t n); that is subject to permanent shocks, and a mean reverting component

C
(
tn):

y
(n)
t = C

(n)
t + P

(n)
t

The following models are estimated

12We adopt Cochrane and Piazzesi (2005) notation for log bond prices: p(n)t = log price of n-year discount
bond at time t. The continuously compounded spot rate is then y(n)t � � 1

np
(n)
t
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where f (1)t;t+4x is the one-year forward rate observed at time t of an investment with

settlement after 3x years and maturity in 4x years, y(1)t is the one-year spot interest rate,

�t is annual core CPI in�ation from time t� 4 to time t; � is a gain parameter calibrated at

0.96 as in Cieslak and Povala, and MYt is the ratio of middle-aged (40-49) to young (20-29)

population in the US, Dt is a step dummy, introduced by Fama in his original study, taking

a value of one for the �rst part of the sample up to August 1981 and zero otherwise. This

variable captures the turning point in the behavior of interest rates from a positive upward

trend to a negative upward trend occurred in mid-1981.

The speci�cation is constructed to evaluate the predictor based on the cyclical

component of rates against the forward spot spread. In his original study, Fama found

that, conditional on the inclusion of the dummy in the speci�cation, this was indeed the

case. This evidence is consistent with the fact the dominant feature in the spot rates of

an upward movement from the �fties to mid-1981 and a downward movement from 1981

onwards is not matched by any similar movement in the forward-spot spread which looks

like a mean reverting process over the sample 1952-2004. We extend the original results by

considering alternative measures of the permanent component over a sample up to the end

of 201313. The results from estimation on quarterly data are reported in Table 5.

131-year Treasury bond yields are taken from Gurkaynak et al. dataset. Middle-young ratio data is
available at annual frequencies from Bureau of Census (BoC) and it has been interpolated to obtain quarterly
series.
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We consider forecasts at the 2, 3, 4 and 5-year horizon. For each horizon we estimate

�rst a model with no cyclical component of interest rates but only the forward spot spread,

then we include the three di¤erent proxies for the cyclical components of interest rates. The

estimation of the model with the restriction dx = 0 delivers a positive and signi�cant estimate

of cx with a signi�cance increasing with the horizon x: However, when the restriction dx = 0 is

relaxed, then the statistical evidence on the signi�cance of cx becomes much weaker. In fact,

this coe¢ cient is much less signi�cant when the cycle is speci�ed using the demographic

variable to measure the permanent component and when any measure of the cycle in

interest rates is introduced in the speci�cation. The inclusion of the dummy is necessary

only in the case of the Fama-cycle, while in the cases of the in�ation based cycle and the

demographic cycle the inclusion of the dummy variable is not necessary anymore to capture

the turning points in the underlying trend. This con�rms the capability of demographics and

smoothed in�ation of capturing the change in the underlying trend a¤ecting spot rates. The

performance the demographic cycle, however, dominates the in�ation cycle at each horizon.

The estimated coe¢ cient on the demographic variable is very stable at all horizons, while

the one on the discounted moving average of past in�ation is more volatile.

5 Robustness

This section examines the robustness of our results along three dimensions. First, we

extend our results to international data, since all the empirical results reported are based

on US data. Second, in all forward projections we have implemented so far we have treated

MYt+i at all relevant future horizons as a known variable. Predicting MY requires projecting

population in the age brackets 20-29, and 40-49. Although these are certainly not the age

ranges of population more di¢ cult to predict14 the question on the uncertainty surrounding

projections for MY is certainly legitimate. Therefore, we consider projections under di¤erent

14Improvement in mortality rates that have generated over the last forty years di¤erence between actual
population and projected population are mostly concentrated in older ages, after 65.
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fertility rates and consider foreign holdings of US debt securities. Third, one might object

that our statistical evidence on MYt and the permanent component of interest rates is

generated by the observation of a couple of similar paths of nonstationary random variables.

Although the spurious regression problem is typical in static regression and all the evidence

reported so far is based on estimation of dynamic time-series model, some simulation based

evidence might be helpful to strengthen our empirical evidence.

5.1 International Evidence

We provide international evidence to evaluate the evidence so far on a larger and

di¤erent dataset. In particular, the demographic variable MYt is constructed for a large

panel of 35 countries over the period 1960-2011 (unbalanced panel)15. We consider the

performance of augmenting autoregressive models for nominal bond yields 16 against the

benchmark where the e¤ects of demographics is restricted to zero.

The results from the estimation are reported in Table 6.

The evidence on the importance of MY in capturing the persistent component of

nominal yields is con�rmed by the panel estimation. Note that the coe¢ cient on MY is

signi�cant with the expected sign even if once we control for the autoregressive component.

5.2 The Uncertainty on Future MY

To analyze the uncertainty on projections on MY we use the evidence produced by the

Bureau of Census 1975 population report, which publishes projections of future population

by age in the United States from 1975 to 2050.17 The report contains projections based

on three di¤erent scenarios for fertility, which is kept constant and set to 1.7, 2.1 and 2.7,

15The results are robust when we contruct a smaller panel with balanced data. The demographic data is
collected from Worldbank database.
16Bond yield are collected from Global Financial data. Long term bond yields are 10-year yields for most

of the countries, except Japan (7-year), Finland, South Korea, Singapore (5-year), Mexico(3-year), Hong
Kong(2-year).
17The report provides annual forecasts from 1975 to 2000 and �ve-year forecasts from 2000 to 2050.
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respectively. All three scenarios are based on the estimated July 1, 1974 population and

assume a slight reduction in future mortality and an annual net immigration of 400,000 per

year. They di¤er only in their assumptions about "future fertility". Since there is only 5-year

forecasts from 2000-2050, we interpolate 5-year results to obtain the annual series. Then we

construct MYt ratio by using this annually projection results of di¤erent fertility rates from

1975 to 2050.

To evaluate the uncertainty surrounding projections for our relevant demographic

variable, Panel A in Figure 6 reports plot actual MYt and projected MYt in 1975.

The actual annual series of MYt is constructed based on information released by BoC

until December, 2010, while, for the period 2011 to 2050 we use projections contained in

the 2008 population report. The �gure illustrates that the projections based on the central

value of the fertility rate virtually overlaps with the observed data up to 2010 and with the

later projections for the period 2011-2050 (Davis and Li, 2005). Di¤erent assumptions on

fertility have a rather modest impact on MY.

Another concern about the uncertainty on future MY is regarding the foreign holdings

of US debt securities. The theoretical justi�cation of the demographic e¤ect comes from

a closed economy model, i.e., it assumes segmented markets. As long as the foreign

demographic �uctuations do not counteract the US demographic e¤ect, this assumption

should be innocuous. Therefore we compute a demographic variable which takes into

account the foreign holdings of US securities, in particular total debt and US Treasury

holdings. Following the last report by FED New York published in April 2013, we identify the

countries with most US security holdings and compute the middle age-young ratio for those

countries, namely Japan, China, UK, Canada, Switzerland, Belgium, Ireland, Luxembourg,

Hong Kong.18 We compute the MY ratio adjusted for foreign holdings; the MY ratio is a

weighted average of the MY ratios of those countries with most US security holdings. The

18We do not have age structure data for Cayman Islands, Middle East countries and rest of the world. So
we account for 60% of foreign bond holdings as of June 2012. Source: Demographic data 1960-2000 from
World Bank Population Statistics, Data 2011-2050 from US Census International Database.
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weights are computed based on the relative US security holdings reported in Table 7 of the

report. In our estimation, we keep the weights �xed at 2012 holdings.

As we see from Panel B in Figure 6, the shape of the demographic variable does not

change substantially once we take into account either total debt or treasury holdings. We

observe that during the early 2000s, for a short period, the predictions of the original MY

variable, and the MY variable adjusted for foreign treasury holdings di¤er. However, the

discrepancy between the two series is temporary and the variables start to co-move again

in the out-of-sample period. While foreign holdings of US Treasuries have been increasing

during the last decade, there is no reason to think that the trend will continue forever (e.g.,

Feldstein, 2011).

5.3 A Simulation Experiment

To assess the robustness of our results we started from the estimation of a simple

autoregressive model for 3-month rates over the full sample. By bootstrapping the estimated

residuals we have then constructed one thousand arti�cial time series for the short-rates.

These series are very persistent (based on an estimated AR coe¢ cient of 0.948) and generated

under the null of no-signi�cance of MY in explaining the 3-month rates. We have then run

one thousand regression by augmenting an autoregressive model for the arti�cial series with

MYt.

Figure 7 shows that the probability of observing a t-stat of -2.91 on the coe¢ cient on

MYt is 0.039 (the t-stat on MYt in the actual regression of the 3-month rate, its own lags and

the demographic variable). This small fraction of simulated t-stat capable of replicating the

observed results provides clear evidence against the hypothesis that our statistical results on

demographics and the permanent component of interest rates are spurious.
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6 Conclusion

The entire term structure of interest rates features a common persistent component.

Our evidence has shown that such a persistent component is related to a demographic

variable, to ratio of middle-aged to young population, MYt. The relation between the

age structure of population and the equilibrium real returns of bonds is derived in an

overlapping generation model in which the demographic structure mimics the pattern

of live births in the US. The age composition of the population de�nes the persistent

component in one-period yields as it determines the equilibrium rate in the central bank

reaction function. The presence of demographics in short-term rates allows more precise

forecast of future policy rates, especially at very long-horizon, and helps modeling the

entire term structure. Term structure macro-�nance models with demographics clearly

dominate traditional term-structure macro-�nance models and random walk benchmarks.

When demographics are entered among the determinants of short-term rates, a simple model

based on a Taylor rule speci�cation for yields at longer maturities outperforms in forecasting

traditional term structure models. Better performance is not limited to statistical accuracy,

but also con�rmed by utility gains using the demographic information. There is a simple

intuitive explanation for these results: traditional Taylor-rules and macro �nance model do

not include an observed determinant of yields capable of capturing their persistence. Linking

the long-term central bank target for interest rates to demographics allows for the presence

of a slowly moving target for policy rates that �ts successfully the permanent component

observed in the data. Rudebusch (2002) relates the "illusion" of monetary policy inertia

to the possibility that estimated policy rules re�ect some persistent shocks that central

banks face. Our evidence illustrates that such persistent component is e¤ectively modeled

by the age structure of the population. The successful �t is then associated to successful

out-of-sample predictions because the main driver of the permanent component in spot rates

is exogenous and predictable. Overall, our results show the importance of including the

age-structure of population in macro-�nance models. As pointed out by Bloom et al. (2003)
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one of the remarkable features of the economic literature is that demographic factors have so

far entered in economic models almost exclusively through the size of population while the

age composition of population has also important, and probably neglected, consequences for

�uctuations in �nancial and macroeconomic variables. This paper has taken a �rst step in

the direction of linking �uctuations in the term structure of interest rates to the age structure

of population.
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Table 1.1

Summary Statistics of the Data in Term Structure Models

Central Moments Autocorrelations

mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

3-month 5:0031 3:0855 0:6914 4:1167 0:9351 0:8874 0:8642

1-year 5:4697 3:1833 0:5313 3:5486 0:9499 0:9087 0:8784

2-year 5:6861 3:1087 0:4494 3:3606 0:9553 09208 0:8931

3-year 5:8577 3:0221 0:4371 3:2724 0:9597 0:9290 0:9024

4-year 6:0020 2:9374 0:4605 3:2360 0:9628 09343 0:9084

5-year 6:1273 2:8589 0:4999 3:2282 0:9650 0:9377 0:9123

LN output factor 0:0674 0:9899 �0:4323 5:7257 0:2506 0:0835 0:1342

LN in�ation factor 0:0504 1:0065 �0:2071 8:7346 0:0638 0:0228 �0:0302

middle-young ratio 0:8620 0:2023 �0:2075 1:5614 0:9974 0:9936 0:9887

Notes. This table reports the summary statistics. 1, 4, 8, 12, 16, 20 quarter yields are
annualized (in percentage) zero coupon bond yields from Fedral Reserve Board (Gurkaynak,
Sack and Wright(2006)). LN In�ation and real activity refer to the price and output factors
extracted from large dataset using extended time series according to Ludvigson and Ng
(2009). Quarterly sample 1961Q3-2013Q4.
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Table 1.2

Summary Statistics of Simulated Real Yields

Central Moments Autocorrelations

mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

Real Yileds

3-month 2:6862 2:7205 0:4109 3:6694 0:9202 0:8655 0:8442

1-year 3:1313 2:7912 0:2486 3:2275 0:9384 0:8912 0:8603

2-year 3:3474 2:7131 0:1639 3:1526 0:9447 0:9052 0:8772

3-year 3:5187 2:6225 0:1570 2:1417 0:9499 0:9146 0:8875

4-year 3:6626 2:5327 0:1913 3:1653 0:9534 0:9204 0:8937

5-year 3:7873 2:4484 0:2446 3:2057 0:9557 0:9239 0:8973

Expected In�ation

3-month 2:3169 0:5927 0:7562 3:7250 0:9878 0:9636 0:9337

1-year 2:3385 0:6041 0:7704 3:7599 0:9878 0:9635 0:9335

2-year 2:3386 0:6036 0:7700 3:7532 0:9874 0:9630 0:9326

3-year 2:3390 0:6046 0:7774 3:7724 0:9863 0:9615 0:9301

4-year 2:3394 0:6059 0:7875 3:8015 0:9854 0:9600 0:9276

5-year 2:3399 0:6074 0:7981 3:8326 0:9846 0:9587 0:9254

Notes. This table reports the summary statistics. 1, 4, 8, 12, 16, 20 quarter yields are
annualized (in percentage) zero coupon bond yields from Fedral Reserve Board (Gurkaynak,
Sack and Wright(2006)). LN In�ation and real activity refer to the price and output factors
extracted from large dataset using extended time series according to Ludvigson and Ng
(2009). Quarterly sample 1961Q3-2013Q4.
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TABLE 2
ATSM Full-Sample Estimates

Demographic ATSM Macro ATSM

Companion form �

�0:125
(0:082)

0:137
(0:123)

�0:153
(0:140)

�0:253
(0:135)

0:165
(0:111)

�0:133
(0:095)

0:134
(0:104)

0:067
(0:105)

�0:311
(0:132)

0:240
(0:192)

�0:057
(0:073)

0:348
(0:087)

0:147
(0:090)

0:079
(0:125)

�0:220
(0:112)

�0:054
(0:072)

0:380
(0:104)

�0:092
(0:110)

0:066
(0:168)

�0:279
(0:118)

�0:028
(0:040)

0:041
(0:026)

0:764
(0:142)

�0:251
(0:040)

0:101
(0:068)

�0:015
(0:009)

0:059
(0:041)

0:981
(0:023)

0:036
(0:120)

�0:087
(0:112)

�0:017
(0:028)

0:057
(0:021)

�0:178
(0:040)

0:622
(0:174)

0:060
(0:032)

�0:015
(0:039)

0:075
(0:024)

�0:039
(0:060)

0:608
(0:141)

0:172
(0:043)

�0:002
(0:018)

0:001
(0:021)

0:240
(0:075)

0:189
(0:076)

0:754
(0:095)

0:020
(0:040)

�0:044
(0:052)

0:018
(0:107)

0:305
(0:034)

0:681
(0:127)

Short rate parameters

�1 �0:006
(0:039)

0:157
(0:121)

0:000
(0:000)

0:000
(0:000)

2:739
(0:372)

�0:007
(0:059)

0:263
(0:119)

2:321
(0:588)

0:000
(0:000)

1:544
(0:957)

�2 �0:010
(0:0037)

0

Price of risk �0 and �1
(�0)

T �0:004
(0:014)

�0:004
(0:002)

0:003
(0:003)

0:004
(0:002)

�0:003
(0:001)

�0:108
(0:261)

�0:008
(0:013)

�0:002
(0:009)

�0:002
(0:010)

0:008
(0:014)

�1 �0:045
(0:325)

� � � 0 �0:000
(0:004)

� � � 0

0:685
(0:297)

�0:012
(0:046)

... �0:017
(0:053)

...
... �0:016

(0:067)

...

�1:162
(0:565)

�1:129
(0:619)

0 � � � �0:972
(0:708)

0 � � � 0:000
(0:000)

Innovation covariance matrix 
o � 105

0:537 0:033 0:535 0:046

0:487 0:494
.

Notes. This table reports the maximum likelihood estimation results for the system
(7) with time-varying risk premium. The left panel contains estimated results for the
unrestricted model which includes the demographic variable MY. The right panel reports
estimated results of the system with the restriction �2 equal to zero. Standard errors are
provided within parentheses. Sample 1964Q1-2013Q4.
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Table 3

A¢ ne Model Out-of-Sample Forecasts

Panel A. Random-walk Benchmark

h 4 8 12 16 20

FRMSE
(GW)

CW
(pvalue)

FRMSE
(GW)

CW
(pvalue)

FRMSE
(GW)

CW
(pvalue)

FRMSE
(GW)

CW
(pvalue)

FRMSE
(GW)

CW
(pvalue)by(1=4)t+hjt 1:224

(0:016)
0:814
(0:208)

0:941
(0:001)

5:624
(0:000)

0:813
(0:000)

8:118
(0:000)

0:832
(0:000)

7:057
(0:000)

0:932
(0:000)

5:803
(0:000)by(1)t+hjt 1:158

(0:010)
0:338
(0:368)

0:923
(0:006)

5:188
(0:000)

0:821
(0:001)

7:466
(0:000)

0:839
(0:000)

6:359
(0:000)

0:935
(0:001)

5:391
(0:000)by(2)t+hjt 1:158

(0:034)
�0:145
(0:558)

0:951
(0:000)

4:317
(0:000)

0:874
(0:000)

6:088
(0:000)

0:897
(0:001)

5:083
(0:000)

0:991
(0:013)

4:281
(0:000)by(3)t+hjt 1:158

(0:008)
�0:337
(0:632)

0:982
(0:393)

3:649
(0:000)

0:926
(0:001)

4:890
(0:000)

0:948
(0:113)

4:070
(0:000)

1:036
(0:258)

3:341
(0:000)by(4)t+hjt 1:154

(0:000)
�0:397
(0:654)

1:008
(0:065)

3:126
(0:001)

0:969
(0:390)

3:892
(0:000)

0:990
(0:002)

3:286
(0:001)

1:070
(0:090)

2:651
(0:004)by(5)t+hjt 1:147

(0:000)
�0:387
(0:651)

1:027
(0:002)

2:705
(0:003)

1:003
(0:075)

3:076
(0:001)

1:023
(0:172)

2:689
(0:004)

1:096
(0:016)

2:182
(0:015)

Panel B. Macro ATSM Benchmark

h 4 8 12 16 20

FRMSE
(GW)

CW
(pvalue)

FRMSE
(GW)

CW
(pvalue)

FRMSE
(GW)

CW
(pvalue)

FRMSE
(GW)

CW
(pvalue)

FRMSE
(GW)

CW
(pvalue)by(1=4)t+hjt 1:060

(0:000)
1:496
(0:067)

0:894
(0:000)

8:410
(0:000)

0:778
(0:000)

9:673
(0:000)

0:747
(0:001)

9:203
(0:000)

0:756
(0:002)

6:962
(0:001)by(1)t+hjt 1:014

(0:002)
2:531
(0:006)

0:859
(0:011)

9:218
(0:000)

0:761
(0:010)

10:689
(0:000)

0:744
(0:005)

9:757
(0:000)

0:760
(0:001)

7:158
(0:000)by(2)t+hjt 0:989

(0:000)
2:967
(0:002)

0:837
(0:001)

9:487
(0:000)

0:752
(0:001)

11:280
(0:000)

0:743
(0:000)

10:080
(0:000)

0:766
(0:000)

7:485
(0:000)by(3)t+hjt 0:975

(0:000)
3:181
(0:001)

0:825
(0:000)

9:596
(0:000)

0:749
(0:000)

11:476
(0:000)

0:745
(0:000)

10:122
(0:000)

0:773
(0:000)

7:687
(0:000)by(4)t+hjt 0:965

(0:000)
3:394
(0:000)

0:817
(0:000)

9:713
(0:000)

0:746
(0:000)

11:491
(0:000)

0:748
(0:000)

10:083
(0:000)

0:778
(0:000)

7:829
(0:000)by(5)t+hjt 0:959

(0:000)
3:598
(0:000)

0:811
(0:000)

9:801
(0:000)

0:745
(0:000)

11:387
(0:000)

0:751
(0:000)

9:980
(0:000)

0:784
(0:000)

7:906
(0:000)

Notes. This table provides yield forecast comparison of Demographic ATSM against
the Random Walk model (Panel A) and Macro ATSM (Panel B) benchmarks. We use
the in-sample estimators, from 1961Q3 to 1981Q2, to generate out-of-sample forecasts until
2013Q4. h indicates 4, 8, 12, 16, 20 quarter out-of-sample forecasts. We measure forecasting
performance as the ratio of the root mean squared forecast error (RMSFE) of our model
against the benchmarks. We report in parentheses the p-values of the forecasting test due to
Giacomini and White (2006) in the columns with FRMSE. A p-value below 0.01 (0.05, 0.10)
indicates a signi�cant di¤erence in forecasting performance at the 1% (5%, 10%) level. We
also measure forecasting performance using Clark and West (2006, 2007) test. We report
the test statistics in the columns CW for each horizon together with p-values in parentheses
below. Quarterly sample 1981Q3- 2013Q4.
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TABLE 4
Out-of-Sample Forecast Usefulness

Panel A. Bond Yields - Quadratic Loss
h 4 8 12 16 20b�

(t�=0)�
t�=1

� b�
(t�=0)�
t�=1

� b�
(t�=0)�
t�=1

� b�
(t�=0)�
t�=1

� b�
(t�=0)�
t�=1

�
by(1=4)t+hjt 0:816

(4:60���)
[�1:04]

0:098
(0:56)

[�5:16���]

�0:238
(�1:19)
[�6:17���]

�0:035
(�0:15)
[�4:36���]

0:307
(2:02��)
[�4:55���]by(1)t+hjt 0:708

(3:61���)
[�1:49]

�0:040
(�0:30)
[�7:83���]

�0:232
(�1:17)
[�6:19���]

�0:016
(�0:07)
[�4:59���]

0:316
(2:26��)
[�4:88���]by(2)t+hjt 0:726

(3:17���)
[�1:20]

�0:076
(�0:59)
[�8:35���]

�0:134
(�0:73)
[�6:18���]

0:112
(0:59)

[�4:70���]

0:413
(3:51���)
[�4:98���]by(3)t+hjt 0:744

(2:97���)
[�1:02]

�0:068
(�0:50)
[�7:74���]

�0:019
(�0:11)
[�6:04���]

0:226
(1:34)

[�4:60���]

0:490
(4:63���)
[�4:81���]by(4)t+hjt 0:754

(2:83���)
[�0:92]

�0:035
(�0:23)
[�6:80���]

0:091
(0:57)

[�5:68���]

0:320
(2:04��)
[�4:34���]

0:548
(5:48���)
[�4:53���]by(5)t+hjt 0:755

(2:71���)
[�0:88]

0:011
(0:07)

[�5:93���]

0:188
(1:20)

[�5:16���]

0:395
(2:62���)
[�4:01���]

0:590
(6:05���)
[�4:20���]

Panel B. Bond Excess Returns - Portfolio Utility Loss
holding period 1-year 2-year

Demographic ATSM 0:595
(1:57)
[�1:07]

0:316
(1:85�)
[�4:00���]

Macro ATSM 0:611
(2:61���)
[�1:67�]

0:707
(1:94�)
[�0:80]

Notes. This table provides results on forecasting usefulness according to Carriero and
Giacomini (2011) test. Panel A shows yield forecast comparison of Demographic ATSM
against the RandomWalk benchmark. Panel B shows bond excess return forecast comparison
of Demographic and Macro ATSM against the Random Walk benchmark. We use the
in-sample estimators, from 1961Q3 to 1981Q2, to generate out-of-sample forecasts until
2013Q4. h indicates 4, 8, 12, 16, 20 quarter out-of-sample forecasts. We report b�, the weight
on the restricted (random walk) model, and the test statistics associated with � = 0 and
� = 1 in the parentheses below. Quarterly sample 1981Q3- 2013Q4.
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Table 5
Predictive Regressions for the 1-year Spot Rate

y
(1)
t+4x -y

(1)
t = ax+bxDt+cx[f

(1)
t;t+4x -y

(1)
t ]+d

x[y
(1)
t -P

(1);i
t ]+"t+12x

P
(1);1
t = 1

20

20P
i=1

y
(1)
t�i�1 (FAMA); P

(1);2
t =

40P
i=1
0:96i�1�t�i�1

40P
i=1
0:96i�1

(CP ); P
(1);3
t =ex 1

4

P4
i=1MYt+i�1

ax
(s:e:)

bx
(s:e:)

cx
(s:e:)

dx
(s:e:)

ex
(s:e:)

R2

no cycle �1:99
(0:26)

2:36
(0:134)

1:29
(0:17)

0:28

Fama cycle no dummy �0:74
(0:25)

0:87
(0:28)

�0:01
(0:11)

0:11

Fama cycle �1:88
(0:25)

3:30
(0:38)

0:42
(0:24)

�0:54
(0:12)

0:35 x = 2

CP cycle 0:78
(0:38)

�0:17
(0:27)

�0:63
(0:13)

0:20

MY cycle 6:83
(1:16)

0:11
(0:20)

�0:54
(0:08)

�0:093
(0:009)

0:27

no cycle �3:04
(0:26)

3:50
(0:33)

2:01
(0:16)

0:50

Fama cycle no dummy �1:42
(0:27)

1:79
(0:31)

0:20
(0:13)

0:22

Fama cycle �2:93
(0:25)

4:35
(0:37)

1:20
(0:24)

�0:50
(0:11)

0:54 x = 3

CP cycle 0:22
(0:44)

0:45
(0:32)

�0:58
(0:15)

0:26

MY cycle 8:13
(1:26)

0:49
(0:21)

�0:65
(0:09)

�0:095
(0:010)

0:39

no cycle �3:56
(0:25)

4:18
(0:32)

2:23
(0:16)

0:59

Fama cycle no dummy �1:75
(0:29)

2:21
(0:32)

0:36
(0:13)

0:25

Fama cycle �3:46
(0:24)

4:90
(0:136)

1:55
(0:23)

�0:43
(0:11)

0:62 x = 4

CP cycle �0:17
(0:49)

0:77
(0:34)

�0:47
(0:17)

0:25

MY cycle 9:36
(01:30)

0:50
(0:22)

�0:75
(0:09)

�0:094
(0:010)

0:43

no cycle �3:57
(0:26)

4:37
(0:33)

2:00
(0:16)

0:56

Fama cycle no dummy �1:65
(0:30)

1:98
(0:32)

0:36
(0:14)

0:18

Fama cycle �3:46
(0:25)

5:15
(0:37)

1:27
(0:24)

�0:46
(0:11)

0:59 x = 5

CP cycle �0:41
(0:53)

0:77
(0:36)

�0:33
(0:018)

0:17

MY cycle 10:48
(1:35)

0:18
(0:23)

�0:83
(0:010)

�0:092
(0:010)

0:41

Notes. This table shows predictive regressions with alternative permanant components.
f
(1)
t;t+4x is one-year forward rate observed at time t of an investment with settlement after 3x

years and maturity in 4x years, y(1)t is 1-year spot rate, �t is annual core CPI in�ation, MYt
is the middle aged to young ratio, Dt is a time dummy(Dt = 1 from 1961Q3 to 1981Q2).
Standard errors are Hansen-Hodrick (1980) adjusted. Sample: 1961Q3-2013Q4.
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Table 6

International Panel

Benchmark model: Rlt = �0 + �1Rlt�1 + "t

Augmented model: Rlt = �0 + �1Rlt�1 + �2MYt + "t

Speci�cation Rlt�1 MYt R̄2

(1) 0:729
(8:39���)

0.55

(2) 0:676
(7:29���)

�0:044
(�3:78���)

0.58

Notes. This table reports international evidence. Pooled regression coe¢ cients account
for country �xed e¤ects. Rlt is the nominal bond yield. Speci�cation (1) is the benchmark
model and speci�cation (2) is the augmented model with MYt. The reported t-statistics
are based on Driscoll-Kraay (1998) standard errors robust to general forms of cross-sectional
(spatial) and temporal dependence. Asterisks *, ** and *** indicate signi�cance at the 10
percent, 5 percent and 1 percent levels, respectively. Last column report within group R2.
There are 35 countries, and 1530 observations in an (unbalanced) panel. Annual sample
1960-2011.
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Fig. 1. Nominal Bond Yields.

Notes. This �gure shows the US post-war nominal yields. The grey area covers from,
the beginning of the �rst round of quantitative easing, to the end of the sample. Sample
1961Q3-2013Q4.
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Fig. 2. 1-Year US Treasury bond yields and the permanent component.

Notes. This �gure compares the middle-aged to young ratio, MY (inverted, right-scaled,
solid dark grey line), FAMA trend (dashed grey line with plus), i.e., 5-year moving average
of 1-year Treasury bond yield, CP trend, i.e.,10 year moving average of core in�ation
(dashed light grey line) with 1-year Treasury bond yield (solid black line). Quarterly sample
1966Q3-2013Q4.
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Fig. 3.1. US simulated 3-month maturity real bond yield and MY (inverted, right-scale).
Sample: 1961Q3-2013Q4.
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Fig. 3.1. US simulated 5-year maturity real bond yield and MY (inverted, right-scale).
Sample: 1961Q3-2013Q4.

Note: The grey area covers from, the beginning of the �rst round of quantitative easing,
to the end of the sample. Sample: 1961Q1-2013Q4.
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Fig. 4. Dynamic Simulations. Sample: 1964Q1 - 2013Q4.

Notes. This �gure plots the time series of bond yields (maturity: 3m, 1y, 2y, 3y, 4y, 5y)
along with those dynamically simulated series from the benchmark Macro ATSM (dashed
light grey line) and Demographic ATSM (solid dark grey line). The a¢ ne models with
time-varying risk premia are estimated over the full sample and dynamically solved from
the �rst observation onward. The grey area covers from, the beginning of the �rst round of
quantitative easing, to the end of the sample. Sample: 1964Q1-2013Q4.
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Fig. 5. In-sample �tted values and dynamically simulated out-of-sample predictions.

Notes. This �gure plots the in-sample estimated values (1964Q1-2013Q4) and
out-of-sample predictions (2014Q1-2045Q4) of: 3-month (reported in the upper panel) and
5-year (reported in the lower panel) yields. The Demographic ATSM (solid dark grey
lines) and Macro ATSM (dashed light grey lines) are estimated over the whole sample
1964Q1-2013Q4. Using the estimated model parameters, models are solved dynamically
forward starting from 1964Q1. The black dash lines are in-sample mean of associated
yields, and the vertical dash line shows the end of in-sample estimation period. Sample
1964Q1-2013Q4.
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Fig. 6.1. MY projections and fertility rates.

Fig. 6.2. MY projections and foreign holdings.

Notes. This �gure plots the middle-aged young (MY) ratio and its long run projections
based on alternative scenarios for the fertility rate and foreign holdings. The MY ratio
(solid black line) is based on annual reports of BoC while MY_1.7 (solid grey line), MY_2.1
(dashed black line) and MY_2.7 (dashed grey line) in Panel A are predicted in 1975 under
1.7, 2.1 and 2.7 fertility rates, respectively. All the projection information in Panel A is from
BoC�s 1975 population estimation and projections report. Panel B projections are based
on authors� calculation from New York Fed�s report on foreign portfolio holdings of U.S.
Securities (April 2013).
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Fig. 7.1. Simulated vs. estimated t-statistics, norminal 3-month yield.
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Fig. 7.2. Simulated vs. estimated t-statistics, real 3-month yield.

Notes. This �gure shows simulated t-statistics on MY ratio which is obtained from an
autoregressive model where the dependent variable is an arti�cial series bootstrapped (5000
simulations) from an autoregressive model for both normial and real 3-month rate. The
estimated t-statistics is the observed value of the t-statistics on MY ratio in an autoregressive
model for the actual normila or real 3-month rate augmented with MY ratio.

51



APPENDIX A. Derivation of Demographic ATSM

We consider the following model speci�cation for pricing bonds with macro and
demographic factors:

yt;t+n = �
1

n
(An +B

0
nXt + �nMY

n
t ) + "t;t+1 "t;t+n � N(0; �2n)

Xt = �+ �Xt�1 + �t �t � i:i:d:N(0;
)
yt;t+1 = �0 + �

0
1Xt + �2MYt
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mt+1 = exp(�yt;t+1 �
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2
�0t
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26664

MYt
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37775 Xt =

266664
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fxt
fu;1t
fu;2t
fu;3t

377775
Bond prices can be recursively computed as:

P
(n)
t = Et[mt+1P

(n�1)
t+1 ] = Et[mt+1mt+2P

(n�2)
t+2 ]
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= Et[exp(�nyt;t+n)]

= EQt [exp(�
n�1X
i=0

yt+i;t+i+1)]

where EQt denotes the expectation under the risk-neutral probability measure, under
which the dynamics of the state vector Xt are characterized by the risk neutral vector of
constants �Q and by the autoregressive matrix �Q

�Q = �� 
�0 and �Q = �� 
�1

To derive the coe¢ cients of the model, let us start with n = 1:

P
(1)
t = exp(�yt;t+1) = exp(��0 � �01Xt � �2MYt)
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A1 = ��0, B1 = ��1 and �1 = 10 = ��2, Then for n+1;we have P
(n+1)
t = Et[mt+1P

(n)
t+1]

= Et[exp(�yt;t+1 �
1

2
�0t
�t � �0t�t+1) exp(An +B0nXt+1 + �nMY

n
t+1)]

= exp(�yt;t+1 �
1

2
�0t
�t + An)Et[exp(��0t�t+1 +B0nXt+1 + �nMY

n
t+1)]

= exp(�yt;t+1 �
1

2
�0t
�t + An + �nMY

n
t+1)Et[exp(��0t�t+1 +B0n(�+ �Xt + �t+1))]

= exp[��0 � �01Xt � �2MYt �
1

2
�0t
�t + An + �nMY

n
t+1 +B

0
n(�+ �Xt)]Et[exp(��0t�t+1 +B0n�t+1)]

= exp[��0 � �01Xt �
1

2
�0t
�t + An � �2MYt +B0n(�+ �Xt)

+ �nMY
n
t+1] expfEt[(��0t +B0n)�t+1] +

1

2
var[(��0t +B0n)�t+1]g

= exp[��0 � �01Xt �
1

2
�0t
�t + An +B

0
n(�+ �Xt)

+
�
��2; n0 , n1 � � � ; nn�1

�
MYn+1t ] expf1

2
var[(��0t +B0n)�t+1]g

To simplify the notation we de�ne [��2;�n] �
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Then we can �nd the coe¢ cients following the di¤erence equations
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APPENDIX B: Data Description

Demographic Variables: The U.S. annual population estimates series are collected
from U.S. Census Bureau and the sample covers estimates from 1900-2050. Middle-aged
to young ratio, MYt is calculated as the ratio of the age group 40-49 to age group
20-29. Past MYt projections for the period 1950-2013 are hand-collected from various
past Census reports available at http://www.census.gov/prod/www/abs/p25.html. MY
projections under di¤erent fertility rates are based on BoC�s 1975 population estimation
and projections report.

Spot rate: 3-Month Treasury Bill rate is taken from Goyal and Welch (2008) extended
collecting data from St. Louis FRED database.

Bond yields: Bond yields are collected from Gurkaynak, Wright and Sack (2007)
dataset, end of month data.

Core In�ation: Time-series of core in�ation are collected from St. Louis FRED
database.

International data: International bond yields are collected from Global Financial
Data up to 2011. Benchmark bond yield is the 10-year constant maturity government bond
yields. For Finland and Japan, shorter maturity bonds, 5-year and 7-year, respectively, are
used, since a longer time-series is available. International MYt estimates for the period
1960-2008 are from World Bank Population estimates and projections from 2009-2050 are
collected from International database (US Census Bureau).

Macro factors: Stationary output and in�ation factors are constructed following the
data appendix of Ludvigson and Ng (2009). Data series of Group 1 (output) and Group 7
(prices) are extended up to 2013Q4 using data from Bureau of Economic Analysis (BEA)
and St. Louis FRED databases.
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