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a) [15] The density of an Exponential variable of mean µi can be re-written as:

f(yi) = exp

[
− y

µi
− log µi

]
which is in the form of an exponential family, where:

- the natural parameter is θ = −1/µ

- the scale parameter is ϕ = 1

- a(ϕ) = ϕ = 1

- b(ϕ) = − log(−θ)
- c(y, ϕ) = 0

b) [15] From the properties of the exponential family of distributions, we know that
E(Y ) = b′(θ), and Var(Y ) = a(ϕ) b′′(θ). Since a(ϕ) = ϕ = 1 and b(θ) = − log(−θ),
then

- b′(θ) = −1/θ

- b′′(θ) = 1/θ2

It follows that E(Y ) = −1/θ and Var(Y ) = 1× 1/θ2 = 1/θ2.

c) [15] The canonical link function is such that the linear predictor equals the natural
parameter, i.e. η = θ, so that g(E(Y )) = θ.

We showed in a) that the natural parameter is θ = −1/µ, and in b) that the expected
value is E(Y ) = µ. Substituting into the above expression we obtain g(µ) = −1/µ,
i.e. the canonical link function is the reciprocal. It follows that for the canonical link

E(Yi) = − 1

ηi
= − 1

α + βxi + γx2i



d) [10] The hypothesis that that variable x does not have a quadratic effect corresponds
to the hypothesis that γ = 0. In order to test it against a two-sided alternative, we
can construct a confidence interval for γ and verify whether it contains the null value.

An approximate 95% c.i. is given by γ̂ ± 1.96 × se(γ̂) = 0.0229 ± 1.96 × 0.0197 =
0.0229 ± 0.038612 = (−0.015712, 0.061512). Since the null value zero is contained in
the interval, we can conclude that parameter γ is not significantly different from zero
at a 5% level, and therefore the researcher is right.
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a) [15] Since the response variable Y is a binary variable (say Y = 1 if the individual is
guilty, Y = 0 otherwise), the appropriate distribution to choose within the exponential
family is the Binomial, Bin(n, µ). The Binomial distribution in this case should be
applied to the rates “no. guilty/no. accidents” considering the number of accidents
n as weights.

Any link function such that µ = E(Y ) = Pr(Y = 1) is bounded between 0 and
1 is appropriate. For instance, we could choose the canonical link function for the
Binomial, that is the logit:

g(µ) = log

(
µ

1− µ

)
b) [15] The linear predictor η is linked to the probability of being responsible for an acci-

dent through the link function, since η = g(µ) and for the Binomial µ = Pr(Y = 1).
We obtain that Pr(Y = 1) = g−1(η).

According to the above model, since no link function is specified, the software assumes
the canonical link, i.e. the logit. Inverting the expression for the logit function, the
required probability as a function of the linear predictor is given by:

Pr(being guilty) =
eη

1 + eη

The estimated linear predictor for a male with high blood concentration is given by
η̂ = 0.82370 + 1.19904 = 2.02274. Therefore the required estimated probability is:

p̂ =
eη̂

1 + eη̂
=

e2.02274

1 + e2.02274
=

7.5590

8.5590
= 0.8832

c) [15] The alternative model would be preferred to the first one if the probability of
being responsible for an accident does not depend on gender, i.e. if the coefficient
denoted by "genderFemale" (say βF ) can be considered statistically equal to zero.

We can test the hypothesis using the test statistic Z = β̂F/se(β̂F )
a∼ N(0, 1). The

observed value, from the output above, is given by:

zobs =
−0.16082

0.04417
= −3.641



whose absolute value largely exceeds the critical value at 5% (1.96). Therefore, we
reject the null hypothesis and conclude that the probability of being responsible for
an accident depends on gender, so the first model is better. The observation of the
p-vaule=0.000271 from the output would lead to the same conclusion.

d) [10] The Poisson distribution can be used to model rates as a large-sample approxima-
tion to the Binomial model in case of a “rare event”, that is a binomial distribution
Bin(n, θ) can be well approximated by a Poisson(λ), with λ = nθ in the case of large
n and small θ (usually less that 0.1).

The observation of our data set shows that, depsite the sample size being large, the
event of being guilty cannot be considered “rare”, since we observe that about 70%
of the accidents have guilty driver. Therefore, in this case, altough we do not know
the actual value of θ, we can infer from the sample evidence that it is larger than 0.1,
and conclude that the Poisson approximation would not be appropriate.
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a) [15] In the R output for Model 1 no link function is specified, so the software uses by
default the canonical link for the specified family. In this case (Poisson), the canonical
link is the logarithm, i.e. η = g(µ) = log(µ).

In the presented model, the linear predictor is a function of three factors (gender,
blood type and city) without interactions, so that a parametrised expression for the
linear predictor is given by: η = βi + γj + δk where indices i, j and k are as follows:
i = 1, 2 for the two levels of gender, j = 1, 2, 3 for the three levels of city, and
k = 1, 2 represents the two levels of blood.

An alternative, equally acceptable, parametrisation for Model 1 is η = α+βi+γj +δk,
with indices i, j and k as above, adding the constraint β1 = γ1 = δ1 = 0, which is the
default parametrisation in R.

b) [10] According to the default parametrisation in R discussed in a), the intercept absorbs
the effects of all base levels of the three factors, i.e. represents the value of the linear
predictor for a male, with blood type “A”, and living in London.

The coefficient denoted by "blood O" gives the additional effect of having blood type
“0”, if compared to the reference group, that is those with blood type “A”.

c) [15] The argument that what matters in terms of location is only whether it is in
London or not corresponds to supposing that the effects of living in Manchester or
Newcastle, compared to London, are the same.

Following again the notation of the default parametrisation of R introduced in a), we
can express such hypothesis as H0 : γ2 = γ3, which can be tested using the following
test statistic:

Z =
γ̂2 − γ̂3

se(γ̂2 − γ̂3)
a∼ N(0, 1)



The standard error above is given by:

se(γ̂2 − γ̂3) =
√

[se(γ̂2)]2 + [se(γ̂3)]2 − 2 Cov(γ̂2, γ̂3)

=
√

0.033422 + 0.031962 − 2× 0.000422297

=
√

0.001293744 = 0.0359687

so that the observed value of the test statistic is:

zobs =
−0.49740− (−0.34982)

0.0359687
= −4.1030

The hypothesis is rejected if |zobs| > 1.96, which is the case, so we cannot assume that
the two effects are the same, as argued by the student.

d) [15] The deviance table presents three models, each nested in the following one (top
to bottom), starting from the base model, corresponding to the previously presented
Model 1, and adding each time a new interaction between two factors.

Model 2 adds to the initial specification of Model 1 the interaction of gender with
blood type, while Model 3 adds to Model 2 the interaction of gender with city. A
parametric expression for the linear predictors of the proposed models is:

- Model 2: gender * blood + city = gender + blood + city + gender.blood;
η = βi + γj + δk + ζik (6 parameters)

- Model 3: gender * (city + blood) = gender + blood + city + gender.blood +
gender.city; η = βi + γj + δk + ζik + κij (8 parameters)

where indices i, j and k are as above.

The number of degrees of freedom for each of the above models is computed as the
difference n−p, where n is the total number of combinations of factors (n = 2×3×2 =
12), and p is the number of parameters. The number of parameters is computed
starting from Model 1 (5 parameters) and adding for each interaction between two
factors an extra (l− 1)(m− 1) parameters, where l and m represent, respectively, the
number of levels of each factor in the interaction.

e) [10] The second row compares Models 2 and 1 as defined earlier, and tests whether
the additional interaction gender.blood gives a significant reduction in the deviance.
This can be expressed parametrically as H0 : ζik = 0.

Since Model 1 is nested in Model 2, we can test H0 using the difference between
deviances, which follows, in this case, an approximate χ2(1) distribution (d.f. cor-
respond to the number of added parameters, as in column 4). The difference in the
deviances is displayed in column 5, while the p-value is shown in column 6. Since
p-value = 0.0006258 < α = 0.05, we reject the null hypothesis, and conclude that the
added interaction is sigificant.



The last row compares Models 3 and 2, similarly to what described for row 2. Here
H0 : κij = 0, with p-value = 0.0000 < α, so again we reject the null hypothesis, and
conclude that the added interaction is sigificant, so that Model 3 is better than Model
2, which was better than Model 1. In conclusion, it is necessary to add interactions
to Model 1, and the best alternative is Model 3.

f) [15] Model 4 represents a quasi-likelihood estimation of the expected value of the
number of cases of peptic ulcer, where the chosen link function is the canonical link
function of the Poisson model, and the variance function is that of the Poisson model
too, while the linear predictor is the same as in Model 3. Let Y represent the variable
cases; we can express the hypotheses as:

- E(Y ) = µ

- Var(Y ) = ϕ µ

- η = log(µ)

where ϕ is a dispersion parameter.

The new model is therefore the extension of Model 3 to consider possible over- or
underdispersion, as it allows for estimation of the dispersion parameter ϕ, which was
previously set equal to 1. Model 4 gives an estimated value for ϕ equal to 7.027038,
much larger than one.

Not all the estimated parameters are significant, in particular all the interaction co-
efficients (last three) show a p-value greater than 10%. This shows that not taking
into account overdispersion can lead to wrong conclusions in terms of significance of
variables.

It is legitimate to use Model 4 for variable cases, since such variable is positive; in
fact, the hypotheses recalled above imply a positive value for µ = exp(η) and therefore
for the variance, which is a linear function of the mean.

g) [10] The last two rows of the deviance table associated to Model 4 allow us to test the
significance of the added interactions gender:city and gender:blood.

Each test is based on the difference in the scaled deviances between the nested models
in two subsequent rows, which follow an approximate F distribution, due to the
estimation of parameter ϕ.

The value of the test statistic and corresponding p-value are shown in the last two
columns, showing that in both cases the added interaction is not significant. Therefore
this contrasts the evidence found in e), and we conclude that, after accounting for
overdispersion, the interactions are no longer significant, so that a model with linear
predictor as in Model 1 and overdispersion is the best specification.


