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Abstract

In this paper we numerically implement some of the recent theoretical results
concerning convexity adjustments derived within the affine term structure setup.
The computation of the convexity adjustments in that setup is reduced to solving a
system of ODES. Here we explore the Vasiček and Cox-Ingersoll-Ross models within
LIBOR-inarrears and investigate how the convexity adjustments change with the
model parameters. The two models reproduce the same behavior with the convexity
adjustment showing up as an additive constant for maturity times > 5 years.

1 Introduction and Motivation

For fixed income markets, convexity has emerged as an intriguing and challenging no-
tion. Taking this effect into account correctly could provide financial institutions with
a competitive advantage. The idea underlying the notion of a convexity adjustment is
quite intuitive and can be easily explained in the following terms. Many fixed income
products are non-standard with respect to aspects such as the timing, the currency or
the rate of payment. This leads to complex pricing formulas, many of which are hard to
obtain in closed-form. Examples of such products include in-arreas or in-advance prod-
ucts, quanto products, CMS products, or equity swaps, among others. Despite their
non-standard features, these products are quite similar to plain vanilla ones whose price
can either be directly obtained from the market or at least computed in closed-form.
Their complexity can be understood as introducing some sort of bias into the pricing
of plain vanilla instruments. That is, we may decide to use the price of plain products
and adjust it somehow to account for the complexity of non-standard products. This
adjustment is what is known as convexity adjustment.

Under most stochastic interest rate setups convexity adjustments cannot be com-
puted in closed-form and market practice is to use add-hoc rules or approximations
when computing them. See, for instance, [1, 2, 3, 4, 5, 6]. Most of the times one has
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no clue on how big this approximation error may be although there is the hope convex-
ity adjustments would be of a different order of magnitude, when compared to market
prices, making all errors negligible.

In this paper we focus on timming adjustments and, in particular, on what we define
to be LIBOR in-arrears adjustments (LIA adjustments). In [7] it was shown that, in
any affine term structure setting, LIBOR adjustments can be obtained in closed-form,
up to the solution of a system of ODEs. Here and for the popular models of Vasiček [8]
and Cox-Ingersoll-Ross [9] models we numerically solved the necessary systems of ODEs
and show, for a reasonable range of parameter values, convexity adjustments may be
substantial in terms of market quotes. This undermines some of the market practices.
Trough numerical experiments we find out and discuss term structure shapes for LIA
convexity adjustments.

The paper is organized as follows. In Section 2 we set the notation, give the defi-
nitions and write the equations to be investigated. Details and proofs will be omitted
as they can be found in [7]. In Section 3 we describe the Vasiček model and show the
numerical results for the convexity adjustment LIA computed within the model. The
exact analytical convexity adjustment for a particular solution of LIBOR in arrears is
derived and analyzed. The Cox-Ingersoll-Ross model is discussed in Section 4. Finally,
in Section 5 we resume our results and conclude.

2 Forward Convexity Adjustments for Affine Term Struc-
ture Models - the forward LIBOR in arrears case

In this section we resume the main results of [7] which are relevant for this work. The
reader can find the details in the above cited work.

Assuming a stochastic interest rate setting, the no arbitrage price π(t,Φ), at time t,
of a derivative paying Φ(T ) at maturity T is given by

π(t,Φ) = EQt
[
e−

R T
t ru du Φ(T )

]
= p(t, T ) ETt [Φ(T )] , (1)

where p(t, T ) is the price at time t of a pure discount bond with maturity T and EQt [·],
ETt [·] denotes the expectation under the risk neutral and the T -forward measure, respec-
tively, conditional on the information available at time t. If the payoff is a T -forward
martingale, then ETt [Φ(T )] = Φ(t). Unfortunately, this is not the case in most situations.
Nonetheless, it may happen that the payoff is a martingale under a different measure.
Let us denote this new martingale measure by QΦ, to stress its payoff dependency. In
that case, it follows Φ(t) = EΦ

t [Φ(T )] and we can then define the convexity adjustment
CCΦ

ETt [Φ(T )] = Φ(t) + CCΦ
t (t) . (2)

as the amount we need to adjust the ETt [Φ(T )] expectation to correct for the fact the
payoff is not a martingale under the T - forward measure.
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The connection between measure changes and convexity adjustments was first pointed
out in [10] and has recently been further exploit in [7] in the context of affine term struc-
ture models.

As described in [7], in this context, various convexity adjustments can be computed
exactly, without the need of approximation assumptions. Here we focus on in-arrears
LIBOR adjustments. In the remaining of this section we establish the necessary notation,
formally define the key ingredients, and state the main result from [7] that we use.

2.1 Affine Term Structure Setup

All the convexity results in [7] apply to multivariate models. Although the particular
instances we will focus on in Sections 3 and 4 are univariate, we introduce here the
necessary matrix notation, as the proposed numerics apply to both cases.

Let (Zt)t≥0 denote an Rm-valued stochastic process whose dynamics, under the risk
neutral measure Q, is given by

dZt = α(t, Zt) dt + σ(t, Zt) dWt , (3)

where W is an n-dimensional standard Brownian motion, α : R+ × Rm 7→ Rm and
σ : R+ × Rm 7→ Rn×n are such that

α(t, z) = d(t) + E(t) z (4)

σ(t, z)σ∗(t, z) = k0(t) +
m∑
i=1

ki(t) zi (5)

with smooth functions d : R+ 7→ Rm and E, k0, ki, i = 1, · · · ,m mapping R+ into
Rm×m. Furthermore, let the risk-free short rate (rt)t≥0 be defined as

r(t, Zt) = f(t) + g(t)∗Zt (6)

where f : R+ 7→ R and g : R+ 7→ Rm are smooth functions. Here and in the following
we use ∗ to denote transpose.

For affine term structure models, it is well-known bond prices can be written as

p(t, T ) = eA(t,T )+B(t,T )∗Zt (7)

with the deterministic functions A and B being the solutions of the ordinary differential
equation system

∂A

∂t
+ d(t)∗B +

1
2
B∗k0(t)B = f(t) , (8)

∂B

∂t
+ E(t)∗B +

1
2
B
∗
K(t)B = g(t) , (9)
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subject to the boundary conditions A(T, T ) = 0 and B(T, T ) = 0. A and B should
always be evaluated at (t, T ). E, d, k0, are from (4)-(5) and f, g from (6) while

B̄ :=


B 0 · · · 0
0 B · · · 0
...

. . .
0 · · · 0 B

 , K(t) =

k1(t)
...

km(t)

 . (10)

2.2 LIBOR rates and LIA convexity

Let us define now some LIBOR rates. LIBOR rates are quoted in the market and are,
thus, the natural underlying to interest rate derivatives. The forward LIBOR rate,
L(t, T, S) with t ≤ T ≤ S, is the discrete compounding interest rate that can be con-
tracted at time t to vigor during the time interval [T, S]. The spot LIBOR rate L(t, S)
is the particular instance of the forward one where the application period starts at the
contract date (t = T ). By definition we have L(t, S) = L(t, t, S) for all t ≤ S and hence
L(T, S) = L(T, T, S). For further details we refer to [11].

Absence of arbitrage in financial markets impose a necessary relationship between
LIBOR rates and the price of pure discount bond maturing at time T and S,

L(t, T, S) =
1

S − T
p(t, T )− p(t, S)

p(t, S)
. (11)

From the definition it follows that L(t, T, S) is a martingale under the S-forward
measure. Pricing a payment of L(T, S) = L(T, T, S) due at time S is, therefore, straight-
forward

EQt
[
e−

R S
t r(u) duL(T, S)

]
= p(t, S) ESt [L(T, T, S)]

= p(t, S)L(t, T, S) , (12)

as both p(t, S) and L(t, T, S) are known at time t and can be simply observed from
market quotes.

Many interest rate derivatives involve, however, in-arrears payments. These are
payments of the spot LIBOR rate before its application period is over. The most common
in-arrears payment is when the LIBOR rate, L(T, S), is due at the very beginning of
its application period (at time T ) instead of at the end (at time S). The value of such
payment can no longer be observed in the market as

EQt
[
e−

R S
t r(u) duL(T, S)

]
= p(t, T ) ETt [L(T, S)]

6= p(t, S)L(t, T, S) . (13)

Note the last equality does not hold because L(t, T, S) is not a T -martingale but a S-
martingale. Still, practitioners, when evaluating ETt [L(T, S)], wish to use what can be
directly observed in the market, the forward LIBOR L(t, T, S), and then “adjust it”
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by adding a term known as convexity adjustment and that we here define as the LIA
convexity. The LIA convexity adjustment CCLIA(t, T, S) is defined as

ETt [L(T, S)] = L(t, T, S) + CCLIA(t, T, S) . (14)

For affine term structure models, in [7] it was proved that this convexity term is
given by

CCLIA(t, T, S) =
1

S − T
p(t, T )
p(t, S)

[
eF (t,T,S)+G(t,T,S)∗Zt − 1

]
, (15)

where F and G are smooth deterministic functions of (t, T, S) and solve the following
ordinary differential equation system

∂F
∂t + [B(t, S)−B(t, T )]∗k0(t)[B(t, T )−B(t, S)] + d(t)∗G − B(t, T )∗k0(t)G

+1
2G

∗k0(t)G + [B(t, T )−B(t, S)]∗k0(t)G = 0

∂G
∂t + [B(t, S)−B(t, T )]∗K(t)[B(t, T )−B(t, S)] + E(t)∗G − B(t, T )K(t)G

+1
2G

∗
K(t)G + [B(t, T )−B(t, S)]∗k0(t)G = 0

(16)
subject to the boundary conditions

F (T, T, S) = 0 and G(T, T, S) = 0 . (17)

The expression in Equation (15) is exact as it does not rely on any approximation and
gives us the necessary LIA convexity in almost closed-form. The use of “almost” here
emphasizes the fact that for most affine term structure models the ODE system in (16)-
(17) is a matrix equation system with possibly time dependent coefficient that must be
numerically evaluated.

2.3 Numerically solving the LIA convexity

Our goal is to evaluate CCLIA(t, T, S) that requires solving (16) subject to the boundary
conditions (17).

The differential equations in (16) are non-linear and are of Riccati type. In general,
find an exact analytical solution is quite difficult if not impossible. Therefore, in order
to evaluate the functions F and G, to compute the convexity adjustments, one has to
rely on numerical procedures.

In the following we solve (16), subject to the boundary conditions (17), for two
popular affine models the Vasiček model [8], in Section 3, and the Cox-Ingersoll-Ross
model [9], see Section 4, using a standard fourth order Runge-Kutta integrator [12]
and integrating backwards in time. A solution, satisfying the boundary condition (17),
can be obtained starting the integration at t = T and setting F (t = T, T, S) = 0 and
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G(t = T, T, S) = 0. The affine models investigated are univariate and the ODE system
in (16)-(17) reduces to solving scalar equations.

The numerical procedure was tested building two independent codes, by different
authors, and comparing the output. Acceptable solutions mean that, up to machine
precision, the output of the two codes provided the same functions.

For the simulations discussed here we took the year as unit of time. Further, we
have investigated how the solution depends on the integration time step δt and conclude
that, for our choice of parameters and for both models discussed, a δt = 0.01 does not
introduce any bias on the numerical solution. All the simulations reported here use such
a value for δt.

3 Convexity Adjustments for LIA - the Vasiček model

In the Vasiček model the instantaneous short rate r is the only state variable, i.e. Z(t) =
r(t), and its dynamics are given by the following stochastic differential equation

dr = (b− a r) dt + σ dW, with a > 0. (18)

The bond prices can be written as

p(t, T ) = eA(t,T )+B(t,T )r(t) , (19)

with

B(t, T ) =
1
a

{
e−a(t−T ) − 1

}
, (20)

A(t, T ) =
B(t, T )− T + t

a2

(
ab− σ2

2

)
− σ2B2(t, T )

4a
. (21)

The computation of function A(t, T ) and B(t, T ) can be found, for example, in [11].
For the Vasiček model, the ordinary differential equation system (16) defining the

the convexity adjustments simplifies considerable. Indeed, the equation for G becomes

∂G

∂t
− aG = 0 , (22)

whose solution is
G(t, T, S) = G0 e

a t +G1(T, S) (23)

with G1(T, S) being an arbitrary function of (T, S). The boundary condition on G, see
equation (17), implies that

G(t, T, S) = G0

(
ea t − eaT

)
. (24)

On the other hand, the equation for F reads

∂F

∂t
+ σ2

[
B(t, S)−B(t, T )

][
B(t, T )−B(t, S)

]
+

{
b− σ2B(t, T )

}
G +

σ2

2
G2 = 0 . (25)
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The Vasiček model does not constraint in anyway G(t, T, S) and, therefore, F (t, T, S).
At most, the functions G(t, T, S) and F (t, T, S) can be computed looking at the market
prices. From the point of view of the calculation of CCLIA this is a problem of the model,
i.e. one is not able to compute the convexity adjustment unless a priori hypothesis
are made on G. For the Vasiček model, the system (16) together with the boundary
conditions (17) is not complete, in the sense that it does allows a unique solution. Note
that, for example, for the Cox-Ingersoll-Ross model (16) and (17) are able to define a
unique solution - see the discussion in section 4.

Since our goal is to compute CCLIA one has to further constraint G. We observe that
the set of ordinary differential equations includes the particular solution G(t, T, S) = 0.
Then, in the following, only the particular solution with G(t, T, S) = 0 will be considered.

For the particular solution where G(t, T, S) = 0, the differential equation that re-
mains to be solved reads

∂F

∂t
− σ2

[
B(t, S)−B(t, T )

]2 = 0 . (26)

In section 3.1 this equations is solved exactly. Here we proceed with the discussion of
its numerical solution.

Equation (26) can be solved numerically using a standard fourth order Runge-
Kutta integrator and integrating backwards in time. A solution, satisfying the bound-
ary condition (17), can be obtained starting the integration at t = T and setting
F (t = T, T, S) = 0. The numerical procedure was tested building two independent
codes, by different authors, and comparing the output. Acceptable solutions mean that,
up to machine precision, the output of the two codes provided the same function.

For the numerical simulation one has to chose realistic values for the parameters
a, b and the volatibility σ. For the parameters a and b we rely on [13], where it was
investigated how well the Vasiček model reproduce the market prices, and take as typical
values a = 0.7 and b = 0.05 and an initial short rate r = 5% . Moreover, without loss of
generality, we set t = 0 and we introduce the following notation

S = T + ∆ST (27)

to investigate different distances between T and S. Naturally, the bigger the ∆ST the
bigger is the LIA convexity.

The term structure of bond prices for different volatilities is reported in figure 1.
The function F (0, T, T + ∆ST ), a first step to compute the convexity adjustment,

is seen in Figure 2 for various ∆ST and volatilities. The figure shows a universal F
behavior. After a sharp rise, F becomes flat for T larger than ∼ 2 − 3, depending on
the value of ∆ST . This means that for large maturity times, convexity corrections are
essentially a function of the bond price, corrected by a multiplicative constant defined
by the asymptotic value of F - see equation (15).

In what concerns the σ dependence, F increases with the volatility and the data
in Figure 2 suggests a F ∝ σ2. This behavior with the volatility is confirmed by the
investigation of the exact analytical solution of equation (26) - see Section 3.1. Indeed,
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Figure 1: Bond price for the Vasiček model.

our numerical solution follows the predictions of the analytical solution discussed in
section 3.1 and this good agreement gives further confidence in our results.

The LIA convexity adjustment are plotted in Figure 3. The corrections to L(0, T, T+
∆ST ) are, for the model under discussion, positive and are always below the 10% level.
Moreover, the adjustments increase both with the volatility and the difference between
maturity time and payoff time, i.e. with ∆ST . Similarly to the F , CCLIA increases
rapidly for small T , showing an almost constant behavior for T larger than ∼ 3 years.

For completeness, in Figure 4 we show the LIA together with the L(0, T, T + ∆ST ) +
CCLIA(0, T, T +∆ST ). The correction to LIA decreases with the volatility and, for large
maturity times, they looks like adding a positive constant to the LIBOR rate.

3.1 CCLIA - The Analytical Solution for the Vasiček Model

The solution of equation (22) given in (24) is a linear combination of exponentials. More,
the differential equation for F , see equation (25), requires only B(t, T ) which is given by
the sum of a constant with an exponential function. This means that, using standard
integration methods, one can integrate (25) exactly. The solution of the full equation
(25) is rather lengthly and it will not be given here. Instead, we will discuss the solution
of (25) when G0 = 0, the particular case solved numerically.

Setting G = 0 in (22), the ordinary differential equation simplifies into (26). For
B(t, T ) given by (20), it follows that

F (t, T, S) = σ2

2 a3

{
2
[
e−a(2t−S−T ) − e−a(T−S)

]
+

+
[
1− e−2 a(t−T )

]
+
[
e−2 a(T−S) − e−2 a(t−S)

]}
(28)
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Figure 2: F (0, T, T + ∆ST ) for the Vasiček model for various volatilities and different
∆ST .
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Figure 3: CCLIA(0, T, T + ∆ST ) for the same set of parameters as in Figure 2.
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Figure 4: L(0, T, T + ∆ST ) and L(0, T, T + ∆ST ) +CCLIA(0, T, T + ∆ST ) for the simu-
lations parameters discussed in the text.

and

F (0, T, T + ∆ST ) = σ2

2 a3

{
2 ea(2T+∆ST ) + e2a∆ST + 1

−e2a(T+∆ST ) − e2aT − 2ea∆ST

}
. (29)

From the definition of F and for small T , after expanding F as a Taylor series in T and
keeping only the lowest order term, one can write

F (0, T, T + ∆ST ) =
σ2

a2

(
1 + e2 a∆ST − 2 ea∆ST

)
T +O(T 2) . (30)

For the parameters used in the simulation, the coefficient multiplying T is a positive
number. The corresponding linear behavior for short T is clearly seen in Figure 2.
Furthermore, we have checked that our numerical solution follows the (30) for all ranges
of T . This gives us further confidence in our numerics.

4 Convexity Adjustments for LIA - the Cox-Ingersoll-Ross
model

Let us now discuss the LIA convexity adjustments in the context of the Cox-Ingersoll-
Ross model. The short rate dynamics is given by the following stochastic differential
equation

dr = a(b− r) dt+ σ
√
r dW . (31)
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Figure 5: Typical F (0, T, T + ∆ST ) and G(0, T, T + ∆ST ) for different ∆ST for the
Cox-Ingersoll-Ross model.

The reader should be aware although one is using the same notation for the Vasiček
and the Cox-Ingersoll-Ross model, the parameters a and b don’t have exactly the same
meaning - see equations (18) and (31).

For the Cox-Ingersol-Ross model the bond price can also be written as (19) with

A(t, T ) =
2 a b
σ2

ln

{
2 γ e(a+γ)(T−t)/2

(γ + a)
(
eγ(T−t) − 1

)
+ 2γ

}
, (32)

B(t, T ) =
2
(
1− eγ(T−t))

(γ + a)
(
eγ(T−t) − 1

)
+ 2 γ

(33)

and where γ =
√
a2 + 2σ2. The system of differential equations for F and G now reads

∂F
∂t + a bG = 0 ,

∂G
∂t + σ2[B(t, S)−B(t, T )][B(t, T )−B(t, S)]

−
[
σ2B(t, S) + a

]
G+ σ2

2 G2 = 0 .

(34)

This system together with the boundary conditions (17) define a unique solution for F
and G, i.e. for the Cox-Ingersoll-Ross model the convexity adjustment can be computed
without ambiguities.

The equations (34) were solved numerically following the some methodology used in
the analysis of the Vasiček model. The differential equations were solved by backward
integration starting at t = T and setting F (T, T, S + ∆ST ) = G(T, T, S + ∆ST ) = 0. As
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Figure 6: F (0, T, T + ∆ST ) as a function of the model parameters.

before, for the integration step we used δt = 0.01. For the choice of parameters, as in
the previous section we rely on [13].

Typical solutions for F and G are reported in Figure 5 for different ∆ST . In all
our simulations we have observed that G is much larger than F for small to medium
maturities times, with F giving the larger contribution to the convexity adjustment in
the long run. Furthermore, while G has a maximum at T ∼ 1 − 2 years and then
decreases monotonically, F always increase with the maturity time T .

The function F (0, T, T + ∆ST ) is not independent of the parameters which defined
the model. Indeed, our simulations show that F increases as T , b, σ and ∆ST take larger
values and when a becomes smaller. How F changes with S − T is illustrated in Figure
5. The remaining dependences are shown in figure 6.

How G(t, T, S) change with T , b, σ and ∆ST is reported in Figures 5 and 7. The
numerical simulations give a G blind to b. More, the maximum of G happens at the
same T but the function increases as the volatility increases. The dependence of G on
∆ST is similar, i.e. the maximum seems to be independent of ∆ST and the maximum
of G increases with ∆ST . In what concerns the dependence with a, it was observed that
smaller values of the parameter produce larger values of G for larger maturity times.
Furthermore, for sufficient small a, G increases with from zero and seems to approach a
plateau, i.e. for smaller a the function G mimics the behavior of F found for the Vasiček
model.

The functions F and G are interesting in the sense that they are required to computed
the LIA convexity adjustment defined in equation (15). From the discussion of the
previous paragraphs, one can claim that CCLIA is mainly given by G for short and
medium maturity times, while for large T the correction CCLIA is given essentially by
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Figure 7: G(0, T, T + ∆ST ) as a function of the model parameters. The curves shown in
the first graph follow the same color code/a-value as in the previous figure.
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Figure 9: CCLIA(0, T, T, T + ∆ST ) as a function of the various parameters.

F .
Although F and G are coupled by equations (34), there relative contribution to the

convexity corrections is a function of maturity time. Typical convexity adjustments,
for various ∆ST , are reported in figure 8. The first comment being that for the Cox-
Ingersoll-Ross model, the corrections are smaller than for the Vasiček model. If for the
later model the corrections can achieve almost 10%, for the first model they are always
below 0.2%. Again, the corrections increase with the payoff time.

Figure 9 shows how the convexity adjustments change with the parameters of the
Cox-Ingersoll-Ross model. In general, CCLIA decreases when a takes smaller values
and increases when b or σ take larger values. Figures 9 and 3 show that the functional
dependence of the convexity corrections is the essentially the same for the two models
investigated here. The main difference being its absolute value with CCLIA ∼ 0.4% for
the Vasiček model and CCLIA ∼ 0.1% for the Cox-Ingersoll-Ross model.

For completeness, in Figure 10 we show the LIBOR in-arrears together with the LIA
corrected by the convexity adjustment computed for the Cox-Ingersoll-Ross model. Note
that the curves have the same structure as those computed within the Vasiček model -
see Figure 4.

5 Results and Conclusions

In this paper we perform the first numerical evaluation of the unified treatment for
convexity adjustments suggested in [7]. In the approach developed here, the calculation
of convexity adjustments is reduced to the computation of the solutions of a system of
partial differential equations subject to specific boundary conditions. The above cited
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Figure 10: L(0, T, T + ∆ST ) and L(0, T, T + ∆ST ) + CCLIA(0, T, T + ∆ST ) for the
Cox-Ingersoll-Ross model.

paper explores only affine term structure models. From the theoretical point of view, the
work of Gaspar and Murgoci removes market inconsistencies and arbitrage opportunities
present in previous calculations of the convexity adjustments.

Our numerical investigation is concerned with the computation of the convexity
adjustments for LIBOR in arrears. For the evaluation of the convexity adjustments
adjustments we rely on short rate models. Here we investigate the solutions of two
popular models, namely the Vasiček and the Cox-Ingersoll-Ross models. Our numerical
work shows that the solutions of the partial differential equations derived in [7] are
smooth functions, not too difficult to handle numerically.

In general the precise value for the convexity adjustments is a function of the param-
eters that define the short rate model. We have found ∼ 0.4% for the Vasiček model and
∼ 0.1% for the Cox-Ingersoll-Ross model as typical values for the adjustments. Despite
the difference in the order of magnitude for the correction, the convexity adjustments
follows essentially the same type of behavior in the two short rate models explored here.
Furthermore, as expected the adjustments increase with the volatility σ, with the matu-
rity time T and with ∆ST = S−T . How the convexity adjustment change with the model
parameterization is summarized in Figures 3 (Vasiček) and 9 (Cox-Ingersoll-Ross).

This is the first numerical investigation of the theoretical work developed by Gaspar
and Murgoci in [7]. We do not explore all the types of convexity adjustments derived
there, neither all the popular short rate models within the LIBOR in-arrears. The
numerical techniques explored here are quite general and can be used within any short
rate model and/or for the multidimensional case.
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[8] O. Vasiček, ”An Equilibrium Characterization of the Term Structure”. Journal of
Financial Economics 5, 177-188 (1977).

[9] J. Cox, J. Ingersoll, S. Ross, ”A Theory of the Term Structure of Interest Rates”,
Econometrica 53, 385-407 (1985).

[10] A. Pelsser, ”Mathematical foundation of convexity correction”, Quantitative Fi-
nance 3, 59-65 (2003).

[11] T. Bjork, Arbitrage Theory in Continuous Time. Oxford University Press, Stock-
holm, 2nd edition, 2004.

[12] See, for example, W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
Numerical Recipes. The art of scientific computing, Cambridge University Press,
3rd edition, 2007.

[13] S. Zeytun, A. Gupta, ”A Comparative Study of the Vasicek and the CIR Model of
the Short Rate”, Berichte des Fraunhofer ITWM, 124, pp. 1-17, (2007).

16


