Mathematics II

Undergraduate Degrees in Economics and Management First Exam, June 4, 2015

1. Let Ω be the domain of the function $f(x, y)=\sqrt{1-x^{2}-y^{2}}+\ln (x+y)$. Determine Ω, including a graphical representation, as well as its interior and boundary. Briefly justify that Ω is convex but not compact.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
\left\{\begin{array}{cc}
\frac{x^{3}}{x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\
0 & ,(x, y)=(0,0)
\end{array}\right.
$$

(a) Show that f is continuous in \mathbb{R}^{2}.
(b) Compute the directional derivative, $\frac{\partial f}{\partial \boldsymbol{v}}(0,0)$, for every nonzero vector $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$.
(c) Show that in general $\frac{\partial f}{\partial \boldsymbol{v}}(0,0) \neq v_{1} \frac{\partial f}{\partial x}(0,0)+v_{2} \frac{\partial f}{\partial y}(0,0)$. Without additional calculations, what can you say about the differentiability of f at $(0,0)$?
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1} function and consider $g(x, y)=f\left(x^{2}+y^{2}, x y\right)$. Knowing that $\nabla f(2,1)=(1,1)$, compute $\nabla g(1,1)$.
4. Consider the function $f(x, y)=x^{2}+y^{2}+x^{3}$.
(a) Determine and classify all critical points of f.
(b) Justify that f attains a global maximum and minimum over $M=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$ and determine them.
5. Compute $\iint_{S} x y d x d y$, where $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2} \leq y \leq 2 x\right\}$.
6. Consider the differential equation $y^{\prime \prime}(x)-y^{\prime}(x)-2 y(x)=e^{-2 x}$.
(a) Solve the initial value problem $y(0)=1 / 4, y^{\prime}(0)=0$.
(b) Determine a solution that satisfies $y(0)=0$ and $\lim _{x \rightarrow+\infty} \frac{y(x)}{e^{2 x}}=\pi$.

