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Abstract

This paper implements a new method to approximate the inverse of the spatial lag operator matrix, ap-

plied to the estimation of nonlinear models with a spatially lagged dependent variable using a Generalized

Method of Moments approach. This procedure drastically reduces the computational complexity of the

inversion of the operator matrix, proving to be especially valuable for large spatial weights matrices. It is

based on a first order truncation and high order approximation of the Taylor series expansion. It explores

particular features of spatial weights matrices and, simultaneously, considers the eigensystem structure

from higher order powers of normalized matrices. As result, a wide range of matrix operations can be

approximated without additional computational burden. A closed formula approximation of the true ele-

ments of the inverse of the operator matrix is obtained. The procedure is implemented to the estimation

of a nonlinear spatial GMM, preserving the nonlinearity of the model and significantly decreasing the

amount of time needed for convergence. A Monte Carlo simulation study shows that the nonlinear spatial

GMM with approximated inverse operator matrix performs well in terms of bias and mean square error.

In addition, the estimator typically exhibits a minimum trade-off between time and unbiasedness within

the class of the nonlinear spatial estimators. Finally, the usefulness of the estimator is illustrated with

an empirical application. The authors study the spatial spillovers of competitiveness in the Metropolitan

Statistical Areas of the United States of America, to assess the effects over the probability of being a

major pole of economic development. These effects are also controlled for environmental quality variables.
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1 Introduction

Observability of the dependent variable is crucial to define the model to be estimated.

Linearity and nonlinearity in parametric models is related to the ability of the researcher

to fully observe the behavior of a particular dependent variable or at least some char-

acteristics of this variable. For cross-sectional data with independent observations, the

estimation of linear models and nonlinear models poses no problem, as the classic estima-

tors and their statistical properties are, by far, extensively discussed in the literature (see

the books of Amemiya, 1985; Maddala, 1986; Greene, 2003; Wooldridge, 2010).

For cross-sectional data with dependent observations, several complications arise. This is

the case for spatial data. As the observational units are correlated in space, the structure

of dependence should be reflected in the estimation (Paelinck, 1967). For linear models,

the classic estimators need to be adjusted to account for the spatial autocorrelation and

spatial heteroskedasticity induced by the spatial weights matrix (see the books of Cliff

and Ord, 1973; Anselin, 1988; Cressie, 1993). Estimation relies on the eigenstructure

of such matrix. For large sample sizes, estimation can be a prodigious task, due to

the computational complexity associated with N × N matrix operations. For nonlinear

models, this problem is amplified. The estimation procedures require the maximization of

a nonlinear function, that also depend on a N × N matrix. Several approaches consider

likelihood based methods (McMillen, 1992; Beron and Vijverberg, 2004, to mention a few)

or Bayesian methods (LeSage, 2000; Smith and LeSage, 2004). But are also infeasible

for large samples, because they rely on N dimensional integration or simulations of N -

variate distributions, respectively. Distribution-free approaches, such as the Generalized

Method of Moments, are more appealing on this framework (Pinkse and Slade, 1998;

Fleming, 2004; Klier and McMillen, 2012). However, these methods rely on N×N matrix

inversions.

Taking into account the complexity of estimating nonlinear models in spatial frameworks,

the objectives of this paper can be summarized in twofold. One, to propose an approxi-

mation that drastically reduces the computational complexity and computational time of

the N ×N matrix inversion. Second, to implement this approximation to the estimation

of a general nonlinear model with a spatially lagged binary dependent variable.
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To reduce the computational complexity and computational time of the N ×N inverse of

the spatial lag operator, the proposed approximation is based on the eigenstructure of the

spatial weights matrix. Considering the eigendecomposition for a general matrix and the

Perron-Frobenius theorem, the inverse matrix can be approximated by a sum of known

matrices. Also, a closed formula approximation is now available for each of the elements

of the inverse matrix.

This approximation is implemented to the full GMM estimator proposed by Fleming

(2004) and detailed by Klier and McMillen (2012). The estimation consists in a two

stage iterative procedure, where the inverse of the spatial lag operator is replaced by

the corresponding approximation. Closed formulas for the gradients are available. Thus,

the estimation time is improved. The proposed estimator is compared to the full GMM

estimator and to the Linearized GMM estimator (Klier and McMillen, 2012), in terms of

bias, efficiency and computational time.

The simulation study suggest that the approximation of the spatial lag operator inverse

is better for binary spatial weights matrices. The proposed estimator appears to perform

as well as the full GMM estimator. Under increasing-domain asymptotics (Cressie, 1993),

these estimators are likely to be consistent. In addition, the computational time can be

drastically reduced for denser matrices.

The proposed estimator also contributes to the literature on regional competitiveness. The

spatial spillovers and environmental effects are central issues. A binary competitiveness

indicator is established for selected Metropolitan Statistical Areas of the United States,

in 2009. The analysis of these subjects is important because competitiveness and environ-

mental impacts have been progressively centering the discussions of political authorities

in the U.S., since the early 2000s. A recent report (Porter, Rivkin, Desai, and Raman,

2016) showed a dilapidation of the U.S. economy during the 2000s, culminating with a

severe economic crisis in the mid-2000s. Only in 2009, the U.S. economy evidenced stable

signs of recovery. Similarly, due to the observable effects of global warming, the environ-

mental impacts of economic growth are now taking part of the political agenda. Does the

environmental impacts influence the probability of being competitive? Does being com-

petitive influence the probability of neighboring areas to be competitive, as well? Results

suggest that there is a negative effect of environmental indicators over the probability of
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being competitive and that there is a positive statistically significant spatial effect over

the probability of neighboring areas to be competitive.

The remainder of this paper is organized as follows. In section 2, a brief overview of

popular spatial and non-spatial models is provided, considerin the problem of observability

of the dependent variable. In section 3, a new method to approximate the spatial lag

operator inverse is presented and implemented to reduce the computational time of a

GMM estimation. In section 4, the results of simulation studies are discussed, showing the

adequacy of the suggested approximation applied to the matrix inversion and estimation.

In section 5, an empirical study proves the usefulness of the new estimator, applied to

the spatial analysis of competitiveness in the U.S. Metropolitan Statistical Areas, where

the environmental effects are central issues. Finally, section 6 concludes. The results of

the simulation studies are shown in appendix 1. The results of the empirical study are

detailed in appendix 2.

2 Observability in spatial models: specification and

estimation

Consider the following model with a spatially lagged dependent variable:

Y ∗i = α
∑
i �=j

wi,jY
∗
j +Xiβ + εi, i = 1, 2, . . . , N (1)

where Y ∗i is a general dependent variable (possibly not observable) for the unit i, with i =

1, 2, . . . , N and N denotes the total number of cross-sectional units. The scalar coefficient

wi,j correspond to the spatial weight of unit j on unit i, with j �= i and j = 1, 2, . . . , N .

The scalar parameter α is the corresponding spatial dependence parameter. The 1 ×K

matrix Xi includes the observations for a set of K exogenous explanatory variables and a

constant, for the unit i. The K × 1 vector β is the corresponding parameter vector to be

estimated. The disturbance term, εi, is an i.i.d. random error for the unit i. Note that

the spatial weights, wi,j, are non-negative scalars and, by convention, wi,i = 0, for all i.

Stacking over the cross-sectional units yields:
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Y∗ = αWNY
∗ +Xβ + ε (2)

where Y∗ is now a N × 1 vector of a general dependent variable, X is a N ×K matrix

of exogenous regressors and ε is a N × 1 vector of i.i.d. random errors. The matrix IN

is the N × N identity matrix. The spatial weights, wij, are the elements of the N × N

spatial weights matrix, WN . In addition, this matrix is non-negative, because wi,j ≥ 0.

A particular feature of the model with a spatially lagged dependent variable (or simply,

spatial lag model) is the joint determination induced by the simultaneous nature of the

spatially lagged term, WNY
∗. Just as in time-series models, the spatial lags can be

distributed infinitely over the right-hand side of the equation. This is illustrated by the

reduced form of the equation (2):

Y∗ = (IN − αWN)
−1Xβ + (IN − αWN)

−1 ε (3)

where,

(IN − αWN)
−1 = IN + αWN + α2W2

N + . . . =
∞∑
k=0

αkWk
N (4)

the spatial lag operator inverse, which will converge absolutely if ‖αWN‖ < 1 (Bernstein,

2009). Plugging (4) in (3) shows that, for each cross-sectional unit, Y ∗i depends on unit

specific explanatory variables and unit specific unobserved effects, and neighbor specific

explanatory variables and neighbor specific unobserved effects, as well. In addition, the

neighbor specific effects are subject to the powers of αWN , which can be seen as a measure

of the extent of the neighboring effects (Anselin, 1988).

Similarly to time-series models, one expect |α| < 1, which implies a decay in the degree

of spatial influence over unit i. However, this is a necessary but not a sufficient condition.

Observe that the norm of αWN also depends on the spectral radius of WN , ρ (WN) =

|λ|max, the largest absolute eigenvalue. In practice, the latter condition poses no additional

problem, as WN is usually normalized in such a way that the rows, or columns, or even

both rows and columns, sum up to one, which ensures that ρ (WN) = 1. Ord (1981)
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suggests to restrict the parameter space of α to 1/λmin < α < 1, after the normalization

of WN , where λmin is the smallest eigenvalue.

Now consider the following example: WN is a 2 × 2 matrix with ones outside the main

diagonal. The eigenvalues are −1 and 1. Therefore, the parameter space can be gener-

alized to −1 < α < 1 (Kelejian and Robinson, 1995). Again the norm condition is still

verified and the spatial lag operator inverse converges.

With regard to the estimation of equation (1), if Y ∗i is observable, the model is linear and

a variety of estimation methods are available, namely: Maximum Likelihood (Ord, 1975;

Anselin, 1988; Anselin and Bera, 1998), Bayesian Markov Chain Monte Carlo (LeSage,

1997), instrumental variables (Anselin, 1988, 1990) or (Generalized) Method of Moments

(Kelejian and Robinson, 1993; Kelejian and Prucha, 1998).

In a brief review, the (full) maximum likelihood estimator (MLE) and the Bayesian

MCMC are computationally intensive estimators. This is a consequence of modeling

the full dependence structure of the spatial data, which results in the computation of log-

determinants and inversion of N -dimensional matrices. Even so, for a moderate sample

size, they are computationally feasible. Under proper specification of the joint density of

Y ∗ conditional on X both methods produce consistent estimates. Efficiency also relies on

the latter assumption.

In contrast to MLE and Bayesian methods, the (Generalized) Method of Moments (GMM)

and instrumental variables (IV) approaches stand as reliable alternatives. This is because

they are distribution-free methods. As the estimated model results from a conjecture

about the true specification, robustness to distributional misspecification is a crucial

point. In addition, the estimation procedure does not require the computation of any

log-determinant, nor the inversion of N -dimensional matrices, significantly reducing the

computational complexity. Under the assumptions established by Kelejian and Prucha

(1998), these methods produce consistent estimates. Efficiency is still a major issue for

several authors. However, Wooldridge (2010) notes that the GMM with “generated”

instruments can be as efficient as MLE. Hence, as the powers of WNX are used as in-

struments, they are “generated” by the nature of the data. If they are included in the

estimation, the GMM in a spatial framework tends to be more efficient.
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A different perspective should be taken if Y ∗i is not directly observable. On this framework,

the observed dependent variable is now Yi, which is a function of particular characteristics

of Y ∗i . Depending on such characteristics, Yi may be either a limited dependent variable

or a discrete dependent variable. Furthermore, the assumption that Yi is a linear function

of the regressors, may lead to theoretically inadequate interpretations, either for a non-

spatial model (Wooldridge, 2010) and for a spatial model (Beron and Vijverberg, 2004).

Case (1992) and McMillen (1992) introduced the analysis of the specification and esti-

mation for binary dependent variables frameworks, more specifically on spatially lagged

dependent variables and on spatially dependent errors. As a result of its complexity, many

authors are still focused on the spatial binary dependent variable framework, even though

generalizations to the spatial multichotomous dependent variable framework appear to be

straightforward.

Without loss of generality, a brief discussion on the specification and estimation of non-

spatial binary dependent variable models will be addressed.

2.1 Non-spatial binary dependent variable models

Along the lines of Wooldridge (2010), let Y ∗i be not observable and given by:

Y ∗i = Xiβ + εi, i = 1, 2, . . . , N (5)

At this point the cross-sectional units are independent and the regressors are strictly

exogenous. The observed variable is Yi and is determined as: Yi = 1 if Y ∗i ≥ 0 and Yi = 0

if Y ∗i < 0. Therefore, Yi follows a probabilistic model:

E (Yi |Xi) = 0× P (Yi = 0 |Xi) + 1× P (Yi = 1 |Xi)

= P (Yi = 1 |Xi) = P (Y ∗i > 0 |Xi)

= P (Xiβ + εi > 0 |Xi) = P (εi > −Xiβ |Xi) = G (Xiβ)

(6)
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In practice, the functionG (·) is usually considered to be a cumulative distribution function

(CDF) based on the distribution of εi conditional on Xi. If G (·) is equal to the CDF of

the standard Normal distribution, Yi will follow a Probit model. If G (·) is equal to the

CDF of the standard Logistic distribution, Yi will follow a Logit model.

In addition, if Var (εi |Xi) = σ2
ε , for all i, the probability in equation (6) must be stan-

dardized:

P (Yi = 1 |Xi) = P (εi > −Xiβ |Xi) = P

(
εi
σε

<
Xiβ

σε

∣∣∣∣Xi

)
= G

(
Xiβ

σε

)
(7)

In terms of estimation under strict exogeneity and cross-sectional independence, there

are two popular methods: maximum likelihood and nonlinear least squares. For the first

method, assuming that the distribution of εi conditional on Xi is already standardized,

the density of Yi conditional on Xi can be defined, for a general i, as:

f (Yi |Xi;β) = G (Xiβ)
Yi + [1−G (Xiβ)]

(1−Yi) (8)

The log-likelihood for the whole sample is given by:

� (β) =
N∑
i=1

log f (Yi |Xi;β) =
N∑
i=1

{Yi log [G (Xiβ)] + (1− Yi) log [1−G (Xiβ)]} (9)

From the maximization of the log-likelihood function, the unknown parameter vector can

be estimated. Consequently, the condition to be solved is E [si (β) |Xi] = 0, where si (β)

is the score function for the unit i.

Gourieroux, Monfort, and Trognon (1984) show that, under regularity conditions and

arbitrarily distributional misspecification of the density Y |X , the maximum likelihood

estimator is consistent and asymptotically normal. Robust inference is standard.

For the second method, estimation is addressed without imposing any distributional as-

sumption. Hence, instead of modeling the latent variable, Y ∗i , and deduce the probability
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based on the observed variable, Yi, a nonlinear model is directly established for Yi, com-

monly known as a single index model:

Yi = G (Xiβ) + εi, i = 1, 2, . . . , N (10)

where G (·) is a link function and Xiβ is the corresponding index of the function. Esti-

mation is addressed by the nonlinear least squares (NLS) estimator and results from the

minimization of:

1

N

N∑
i=1

[Yi −G (Xiβ)]
2 (11)

Observe that the expression above does not have a closed form. Even so, the optimization

of a nonlinear function can be done numerically. One of the most popular method for

nonlinear optimization is the Gauss-Newton algorithm. It is based on a first order Taylor

expansion of the function G (·) around an initial estimate, β(0):

G (Xiβ) ≈ G
(
Xiβ

(0)
)
+

∂G

∂βᵀ

∣∣∣∣
β=β(0)

(
β − β(0)

)
(12)

and the iterative solution is given by the ordinary least squares (OLS) estimates of the

previous equation in each step. As a result, the estimates in each iteration are updated

using the follow formula:

β(s+1) =
[(
g(s)
)ᵀ (

g(s)
)]−1 (

g(s)
)ᵀ (

G−G(s) + g(s)β(s)
)

= β(s) +
[(
g(s)
)ᵀ (

g(s)
)]−1 (

g(s)
)ᵀ

ε(s)
(13)

where g(s) is the first derivative of function G(s) and ε(s) is the N × 1 vector of NLS

residuals, all evaluated at the estimates of step s, with s = 0, 1, . . . , S − 1 and S is the

step where convergence is achieved.

Under classic continuity assumptions of the function G (·), the NLS estimator is consistent

and robust to any functional form misspecification of the variance of the random error.

9
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Note that, if Var (εi |Xi) = σ2
ε , the index should also be standardized. This guarantees

that the NLS estimates are comparable to the maximum likelihood estimates.

Next spatial dependence will be introduced through the binary dependent variable and

the available estimation methods will be discussed.

2.2 Spatial dependence in binary dependent variable models

Consider a spatially lagged binary dependent variable model. From the results discussed

in the previous sections, this model follows the latent variable model from equation (3).

However, the error is now given by u = (IN − αWN)
−1 ε, which implies that:

Var (u |X,WN) = [(IN − αWN)
ᵀ (IN − αWN)]

−1
= Σ (14)

assuming that Var (ε |X,WN) = IN . As a result, the model for the observed binary

dependent variable is given by:

Y = G
(
(IN − αWN)

−1X#β
)
+ u (15)

where, X# is an N×K matrix of transformed regressors, due to the heteroskedastic nature

of the error, u. Concretely, X#

i = Xi/σi, with

σ2
i = diag

(
[(IN − αWN)

ᵀ (IN − αWN)]
−1
)
i,i

(16)

The estimation of nonlinear models under spatial dependence turns to be, in most cases, a

tremendous computational task. Still, all the methods seen in the previous sections apply

to this framework as well.

Concretely, applying (full) maximum likelihood to estimate a nonlinear model with a

spatially lagged binary dependent variable implies that the distribution of u conditional

on X follows a multivariate distribution. Here the log-likelihood for the whole sample is

given by:

10
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� (β, α) =

∫
AN

∫
AN−1

. . .

∫
A2

∫
A1

g (u) du (17)

where g (u) is the multivariate PDF and Ai, i = 1, 2, . . . , N , is an interval such that:

Ai =

⎧⎨⎩(−∞,X##

i β) , if Yi = 1

(X##

i β,∞) , if Yi = 0
(18)

with X##

i the ith row of the matrix (IN − αWN)
−1X#.

Under correct distributional specification, the major drawback of this method is related

to the computation of the N -dimensional integral, which requires extraordinary computer

capability. Still, several authors suggest estimation procedures based on maximum like-

lihood methods. Case (1992) estimates a spatial Probit and assumes a block diagonal

structure for the spatial weights matrix, where each block has Nb − 1 neighbors, with

b = 1, 2, . . . , B and B is the number of blocks. This translates into a generic element

wij = 1/ (Ng − 1) for the block diagonal row-standardized spatial weights matrix and

allows the simplification of IN − αWN . Under these assumptions, the model of interest

follows a Chamberlain-Mundlak mean augmented regression, with spatially dependent

errors. The off-diagonal information of Σ is neglected and estimation is simplified to

an i.i.d. standardized Probit. McMillen (1992) uses the expectation-maximization algo-

rithm (EM algorithm) to obtain estimates for a Probit with spatial dependence (in the

dependent variable and in the error term). Only the diagonal information of Σ is con-

sidered in the estimation, therefore the expectations are derived from an heteroskedastic

Probit. The off-diagonal information of Σ is obtained after the estimation. Beron and

Vijverberg (2004) and Pace and LeSage (2016) consider the RIS simulator and the GHK

simulator, respectively, to evaluate the N -dimensional integral. Bhat (2011) and Wang,

Iglesias, and Wooldridge (2013) consider the pairs of closest observations and derive a

partial maximum likelihood method to estimate a Probit with spatially dependent errors

(the first work also generalizes the estimation to the spatially lagged dependent variable

framework). Martinetti and Geniaux (2017) consider the Mendell-Elston approximation

method to compute the multivariate Normal probabilities as the product of univariate

conditional probabilities. However, the previous methods either fail to account for the

11
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full dependence structure of the spatial data or they are computationally burdensome

even for moderate sample sizes.

Just as maximum likelihood, the Bayesian approach is also widely used in the estimation

of spatial nonlinear models. The methodology is based on the works of LeSage (2000)

and Smith and LeSage (2004). In the first, the probabilities are simulated by the Gibbs

sampler, whereas in the second it is based on Markov Chains Monte Carlo (MCMC).

Again, these methods are computationally burdensome.

Again distribution-free methods stand as reliable alternatives due to their robustness to

distributional misspecification. Pinkse and Slade (1998) consider the GMM estimation of

an heteroskedastic Probit with spatially dependent errors. Only the diagonal information

of Σ is considered, thus one obtain estimates for the univariate conditional probability.

In general, estimators that use only the diagonal information of Σ produce consistent

estimates, but they are extremely inefficient compared to full MLE approaches (Wang

et al., 2013). However, even if it was computationaly feasible to estimate the multivariate

probability, there are several problems concerning the interpretation of such quantity

(Greene, 2003).

Fleming (2004) suggested a full GMM estimation approach of a Probit with spatial de-

pendence (in both the dependent variable and in the error term), to overcome such issues.

In particular, the structural form of a Probit with spatially lagged dependent variable is

considered, similar to the specification of equation (15). Because the spatial lag opera-

tor inverse, (IN − αWN)
−1, is introduced in the objective function, the full structure of

spatial dependence is considered in the estimation. The objective function follows as:

Q (β, α) = uᵀ
∗ZΞZ

ᵀu∗ (19)

where Z is the N × (k + p) matrix of instruments, with X and powers (p) of WNX as

instrumental variables (it is usual to consider, p = 2). The (k + p) × (k + p) matrix

Ξ is a symmetric positive definite matrix and the N × 1 vector u∗ is the generalized

residuals vector. Gourieroux, Monfort, Renault, and Trognon (1987) demonstrate that

the generalized residuals have desirable properties in comparison to those obtained from

the pure NLS estimation. The generalized residuals are given by:

12
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u∗,i =
[Yi −G (·)] g (·)
G (·) [1−G (·)] , i = 1, 2, . . . , N (20)

where function g (·) is the first derivative of G (·) and the indexes of these functions are

(IN − αWN)
−1Xβ instead of (IN − αWN)

−1X#β. This last consideration is the major

drawback of this approach, as the index is not rescaled by the diagonal elements of Σ. As

a consequence, the estimates of the parameter vector will be biased. Klier and McMillen

(2012) presents two estimation approaches, based on equation (15), which allows to solve

the drawback of the latter work. In addition, it generalizes the estimator of Pinkse and

Slade to a Probit with a spatially lagged dependent variable.

Along the lines of Klier and McMillen (2012), the objective function for the Probit with

spatially lagged dependent variable equal to the objective function of Fleming estimator,

but Ξ = (ZᵀZ)−1. This implies that the full GMM estimator reduces to a nonlinear two

stages least squares (N2SLS) estimator. Again, as the objective function in (19) does

not have a closed form, an iterative procedure is used. Similarly to the Gauss-Newton

algorithm, in equation (13), the following steps are considered:

1. Assume initial values for the parameter vector Θ = (β, α)ᵀ, Θ(0), and compute the

gradients evaluated at the initial values Γi = (∂u∗,i/∂Θ)|Θ=Θ(0) , i = 1, 2, . . . , N .

2. Regress Γ on Z, in a similar fashion to (linear) 2SLS. Obtain Γ̂.

3. Construct new estimates as Θ(s+1) = Θ(s) +
[(
Γ̂

(s)
)ᵀ (

Γ̂
(s)
)]−1 (

Γ̂
(s)
)ᵀ
u
(s)
∗ , where

u
(s)
∗ are the generalized residuals evaluated at the estimates of step s.

4. Repeat steps 1. to 3., using the estimates from the last iteration, until the algorithm

converges.

The estimated asymptotic variance of the N2SLS estimator is:

̂
Avar

(
Θ̂
)
=
(
Γ̂

ᵀ
Γ̂
)−1 [ N∑

i=1

û2
i Γ̂

ᵀ
i Γ̂i

](
Γ̂

ᵀ
Γ̂
)−1

(21)

For a general function G (·), the individual gradients for each parameter are given by:
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(Γβ)i =
∂u∗,i
∂βᵀ = −u∗,i

(∇g (X##

i β)

g (X##

i β)
− u∗,i

)
X##

i , i = 1, 2, . . . , N (22)

and

(Γα)i =
∂u∗,i
∂α

= −u∗,i
(∇g (X##

i β)

g (X##

i β)
− u∗,i

)[
Hiβ − X##

i β

2σ2
i

Υii

]
, i = 1, 2, . . . , N

(23)

where ∇g (·) is the second derivative of the function G (·), Hi is the ith row of the matrix

(IN − αWN)
−1WNX

## and Υii is the ith element of the diagonal of the matrix:

Υ = (IN − αWN)
−1
{
WN (IN − αWN)

−1 +
[
WN (IN − αWN)

−1]ᵀ} [(IN − αWN)
−1]ᵀ
(24)

For a Probit with a spatially lagged dependent variable, the term ∇g (X##

i β) /g (X##

i β) =

−X##

i .

At this point, the estimation of the Probit with a spatially lagged dependent variable

by N2SLS appears to be a feasible solution. The closed forms for the gradient matrix

help to accelerate the optimization process, because there is no need to compute them

numerically. However, on each iteration, one has to compute the inverse (IN − αWN)
−1,

which is a time-consuming operation, especially for a moderate sample size.

As a result, Klier and McMillen (2012) suggest a procedure that allows for a simplification

of the estimation procedure and to reduce the computational burden. It consists in a

linearization of the model around α = 0. This choice is obvious: no matrices need to be

inverted and none of the gradients are equal to zero. In addition, the error term, u, now

has a constant variance, which implies that the regressors no longer have to be rescaled,

X##

i = Xi, and one can obtain initial estimates of β by standard Probit estimation.

Furthermore, for a general function G (·), the gradients simplify to:

(Γβ)i =
∂u∗,i
∂βᵀ = −u∗,i

(∇g (Xiβ)

g (Xiβ)
− u∗,i

)
Xi, i = 1, 2, . . . , N (25)

14
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and

(Γα)i =
∂u∗,i
∂α

= −u∗,i
(∇g (Xiβ)

g (Xiβ)
− u∗,i

)
Hiβ, i = 1, 2, . . . , N (26)

where, now Hi is the ith row of the matrix WNX. For a Probit with a spatially lagged

dependent variable, the term ∇g (Xiβ) /g (Xiβ) = −Xi.

In terms of estimation, it is similar to the iterative procedure of the full GMM. However,

only one step is required to obtain estimates for the parameter vector Θ = (β, α)ᵀ,

because β can be consistently estimated by standard Probit and the gradients do not

depend on α. Therefore, in step 3., there is no need to update the estimates. Simply

regress u
(0)
∗ + (Γβ)

ᵀ β(0) on Γβ and Γα. The corresponding coefficients are the estimated

values of β and α.

The estimated asymptotic variance of the Linearized GMM estimator is:

̂
Avar

(
Θ̂
)
=

(
N∑
i=1

û2
i

)(
Γ̂

ᵀ
Γ̂
)−1

(27)

Observe that the Linearized GMM only requires a single iteration to achieve convergence

and produce estimates. Thus, it outstands all of the remaining estimation methods,

in terms of computational time. In addition, no N -dimensional matrices need to be

inverted, largely reducing the computational complexity of this method. However, as the

linearization is made around α = 0, this method only provide good estimates for the

spatial lag parameter if |α| ≤ 0.5.

At this point, either the full GMM or the Linearized GMM have disadvantages, whether

due to excessive computational complexity, or to excessive simplification that may lead

to inconsistency. A middle-ground solution may rely on an approximation procedure

applied to the most complex matrix operation, the inversion of (IN − αWN), that is able

to turn the estimation a computationally feasible operation for large samples. Below, the

approach for this approximation procedure is presented.

15



The inversion of the spatial lag operator in nonlinear models: fast computation and a
closed formula approximation 16

3 Approximation of the spatial lag operator inverse

Consider the spatial lag operator inverse, (IN − αWN)
−1. For general matrices, the com-

putational complexity of the matrix inversion is O (N3). As a consequence, even for a

moderate size sample, this is an extremely time-demanding operation. Recognizing the

restriction that such kind of issue poses to a practitioner, the main goal is to approximate

the inverse by less complex matrix operations that take into account the characteristics

of the eigenstructure of W (for notational ease, the subscripts N are dropped).

Recall that W is a non-negative normalized matrix. This normalization is based on an

initial matrix W0, that may be non-symmetric. Let DR be a diagonal matrix, where the

row sums of W0 are the diagonal elements. The matrix W = D−1
R W0 has row vectors

that sum up to one, hence it is row stochastic. The transpose of a row stochastic matrix,

Wᵀ = Wᵀ
0D

−1
R has column vectors that sum up to one, hence it is a column stochastic

matrix. To obtain a doubly stochastic matrix an iterative procedure is required, based

on W(s+1) =
(
D

(s)
R

)−1/2
W(s)

(
D

(s)
R

)−1/2
, with s = 1, 2, . . . , S. Only at the convergence

step, S, both row and column vectors sum up to one. Notice that, at step s = 0,

W(1) = D
−1/2
R W0D

−1/2
R . The latter matrix is similar to W and to Wᵀ. In other words,

W(1) =Wsim has the same eigenvalues that W and Wᵀ.

On this framework, matrix similarity and the symmetry of W0 play a major role on the

approximation procedure, as it will be shown. For now, because W and Wᵀ are always

non-symmetric matrices, the following theorem establish the result on the eigendecompo-

sition of a general matrix:

Theorem 1.1 (Bernstein, 2009, p. 339). LetW ∈ Cn×n, assume thatW is diagonalizable

over C with eigenvalues λ1, λ2, . . . , λN , and let Λ = diag (λ1, λ2, . . . , λN). If v1,v2, . . . ,vN

are linearly independent eigenvectors of W associated with λ1, λ2, . . . , λN , then W =

VΛV−1, where V = [v1 v2 . . . vN ]. Conversely, if V ∈ Cn×n is nonsingular and

W = VΛV−1, then the columns of V are the associated eigenvectors.

Also, asW is non-negative, the next theorem provide the main result on the eigenstructure

of such matrices. This theorem is also known as the Perron-Frobenius theorem:

Theorem 1.2 (Perron-Frobenius). Let W ∈ Cn×n, where n ≥ 2, and assume that W is

non-negative. Then,

16
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i) The spectral radius of W, ρ (W), is an eigenvalue of W;

ii) There exists a nonzero nonnegative vector v ∈ Cn such that Wv = ρ (W)v

For a row stochastic matrix, W, its spectral radius is equal to one, then it must be true

that Wι = ι, where ι is a vector of ones (Bernstein, 2009, p. 275). Therefore, the largest

eigenvector of W associated with the largest eigenvalue is v1 = ι.

Now, consider the Taylor series expansion of the inverse, as in equation (4). Under the

result of theorem 1.1, the following holds:

(I− αW)−1 = I+ αW + α2W2 + α3W3 + . . .

= I+ αVΛV−1 + α2
(
VΛV−1)2 + α3

(
VΛV−1)3 + . . .

= I+ αVΛV−1 + α2VΛV−1VΛV−1 + α3VΛV−1VΛV−1VΛV−1 + . . .

= I+ αVΛV−1 + α2VΛ2V−1 + α3VΛ3V−1 + . . .

(28)

and (I− αW)−1 can be rewritten as V (I− αΛ)−1V−1. However, this would yield no

computational gains. All the eigenvalues and eigenvectors must be computed and a matrix

still needs to be inverted. In practice, one would be worse off.

Nevertheless, from the previous equation, it is possible to conclude that, as p → ∞, the

powers of the Taylor expansion converge to:

lim
p→∞

Wp = lim
p→∞
(
VΛV−1)p = V

(
lim
p→∞

Λp

)
V−1 (29)

If the largest absolute eigenvalue of W is assumed to have algebraic multiplicity of one1,

then limp→∞Λp = limp→∞ diag (1p, λp
2, . . . , λ

p
N). But the remaining eigenvalues are, in

absolute value, less than one, so Λ∞ = diag (1, 0, . . . , 0). In other words, the “long run”

matrix, W∞, is equal to col (V)1 row (V−1)1, with col (V)1 = ι.

1This assumption can be relaxed at a cost of approximation accuracy.
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To fully identifyW∞, the first row of the inverse eigenvector matrix needs to be computed.

This poses an additional problem, because, to obtain row (V−1)1, one has to solve the

entire linear system.

Nevertheless, recall that the matricesW andWsim are similar, therefore the eigenvectors

of W can be expressed as a function of the eigenvectors of Wsim. In addition, if W0 is

symmetric, then Wsim is symmetric as well and its eigenvectors have desirable properties

that will allow to simplify the problem. However, if W0 is not symmetric, a different

approach should be taken.

Based on the two scenarios of W0, the approaches to obtain W∞ are discussed below.

3.1 Case 1: symmetric W0

The following theorem establishes the result on the eigendecomposition of a symmetric

matrix:

Theorem 1.3 (Bernstein, 2009, p. 314). Let Wsim ∈ Cn×n and assume that Wsim is

symmetric. Then there exists a unitary matrix (resp. orthogonal matrix in Rn×n) Vsim

such that Wsim = VsimΛV
ᵀ
sim.

Because Vsim is a unitary matrix (resp. orthogonal matrix), the euclidean norm of each

eigenvector vector of Vsim is equal to one,

‖vsim,j‖2 =
√
v2sim,(1,j) + v2sim,(2,j) + . . .+ v2sim,(N,j) = 1, j = 1, 2, . . . , N (30)

RewriteWsim as D
1/2
R WD

−1/2
R . Consider the eigendecomposition for these matrices. This

yields:

Wsim = D
1/2
R WD

−1/2
R ⇔ VsimΛV

ᵀ
sim = D

1/2
R VΛV−1D−1/2

R (31)

Due to similarity, it is straightforward that Vsim = D
1/2
R V and Vᵀ

sim = V−1D−1/2
R . But,

Vᵀ
sim = VᵀD

1/2
R . Therefore, at the “long run”,

18
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W∞
sim =

1∥∥∥D1/2
R col (V)1

∥∥∥
2

∥∥∥col (V)ᵀ1D
1/2
R

∥∥∥
2

×D1/2
R col (V)1 col (V)ᵀ1D

1/2
R

=
1[√(

d
1/2
R,1

)2
+
(
d
1/2
R,2

)2
+ . . .+

(
d
1/2
R,N

)2]2D1/2
R ιιᵀD

1/2
R

=

[
N∑
i=1

dR,i

]−1
D

1/2
R JD

1/2
R =

[
N∑
i=1

N∑
j=1

w0,(i,j)

]−1
D

1/2
R JD

1/2
R

(32)

where w0,(i,j) are the (i, j) elements ofW0 and J is a matrix of ones. The matrix is rescaled

by the sum of all elements ofW0 because Vsim has to be unitary (resp. orthogonal). Now,

to obtain W∞ rewrite W as D
−1/2
R WsimD

1/2
R . This yields:

W∞ = D
−1/2
R W∞

simD
1/2
R =

[
N∑
i=1

N∑
j=1

w0,(i,j)

]−1
JDR (33)

Observe that the matrix product JDR can be simplified to a less demanding matrix-vector

product, since DR is a diagonal matrix. Furthermore, the stochastic property of W∞ is

always equal to the stochastic property of W. Note that, if W is doubly stochastic, the

result of theorems 1.2 and 1.3 directly apply andW∞ can be even more simplified. These

results are crucial for the approximation of (I− αW)−1 under various stochastic scenarios

for the matrix W.

Several authors (LeSage and Pace, 2009; Arbia, 2014; Elhorst, 2014, to name a few)

suggest to consider the Taylor series expansion of the inverse and apply a truncation at

small powersW. Still, this operation can be computationally demanding, because several

matrix products need to be calculated. If the powers p ≥ 2 of W are all substituted

by W∞, the computational demand of this operation is minimal. Hence, the spatial lag

operator inverse is approximated by:
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(I− αW)−1 = I+W + α2W2 + α3W3 + . . .

≈ I+ αW + α2W∞ + α3W∞ + . . .

= I+ αW +
α2

1− α
W∞

= I+ αW +
α2

1− α

[
N∑
i=1

N∑
j=1

w0,(i,j)

]−1
JDR

(34)

and the convergence condition of the Taylor series expansion in equation (4) still holds.

This involves no matrix products and the operations implied are based on quantities that

have been already computed. Note that the quality of this approximation is determined

by the eigenvalues of order r ≥ 2. Specifically, it depends on how fast the remaining

eigenvalues converge to zero. In fact, this approximation is related to the method proposed

by Griffith (2000), applied to linear models.

3.2 Case 2: nonsymmetric W0

In the case whereW0 is non-symmetric, there is at least one unit j that does not influence

unit i, but the converse is not true. In addition, Wsim is no longer symmetric and the

assumptions of theorem 1.3 do not hold. As a consequence, the eigendecomposition of

Wsim is given by VsimΛV
−1
sim.

Consider the eigendecomposition ofW andWsim. Now, the eigenvectors relate as Vsim =

D
1/2
R V and V−1

sim = V−1D−1/2
R . As a result, a matrix inversion is still required.

Just as in the first scenario, a symmetric matrix is needed to approximate W∞
sim. Hence,

a symmetrization procedure is applied to W0, such that the nonzero elements (i, j) are

equal to the zero elements (j, i) and vice-versa, with i, j = 1, 2, . . . , N and i �= j. This

procedure follows as:

W∗
0 =

1

2

{
W0 +Wᵀ

0 +
[
(W0 −Wᵀ

0)
◦2
]◦1/2}

(35)
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where “◦2” is the Hadamard square and “◦1/2” is the Hadamard square root, respectively(
w0,(i,j) − w0,(j,i)

)2
and
[(
w0,(i,j) − w0,(j,i)

)2]1/2
. If the norm of

[
(W0 −Wᵀ

0)
◦2
]◦1/2

is small,

it implies that W0 ≈Wᵀ
0. On this scenario, W∗

0 ≈W0.

Even though W∗
0 may be close to W0, the row sums are different. This implies that the

normalized matrices also differ. Concretely, based on W∗
0, the row stochastic matrix is

W∗ = D−1
R∗W

∗
0 and the similar matrix isW∗

sim = D
−1/2
R∗ W∗

0D
−1/2
R∗ , whereDR∗ is a diagonal

matrix with diagonal elements equal to the row sums of W∗
0.

Similarly to the previous case, rewrite W∗
sim as D

1/2
R∗W

∗D−1/2
R∗ . Consider the eigendecom-

position for these matrices. This yields:

W∗
sim = D

1/2
R∗W

∗D−1/2
R∗ ⇔ V∗

simΛ
∗ (V∗

sim)
ᵀ = D

1/2
R∗V

∗Λ∗ (V∗)−1D−1/2
R∗ (36)

It is straightforward that V∗
sim = D

1/2
R∗V

∗ and (V∗
sim)

ᵀ = (V∗)−1D−1/2
R∗ . But, (V∗

sim)
ᵀ =

(V∗)ᵀD1/2
R∗ .

In addition, if W∗
sim is rewritten as a function of Wsim, it follows that:

W∗
sim ≈ D

−1/2
R∗ D

1/2
R WsimD

1/2
R D

−1/2
R∗ (37)

Substituting by the corresponding eigendecomposition, this yields:

W∗
sim ≈ D

−1/2
R∗ D

1/2
R WsimD

1/2
R D

−1/2
R∗ ⇔

⇔ V∗
simΛ

∗ (V∗
sim)

ᵀ ≈ D
−1/2
R∗ D

1/2
R VsimΛV

−1
simD

1/2
R D

−1/2
R∗

(38)

Observe that Λ∗, the eigenvalue matrix of W∗
sim, is not equal to Λ, the eigenvalue matrix

of W∗
sim. However, both have the same spectral radius, ρ (W∗

sim) = ρ (Wsim) = 1. This

implies that limp→∞ (Λ∗)p = limp→∞Λp = diag (1, 0, . . . , 0). Therefore, as p → ∞, the

eigenvectors are directly related. Concretely, V∗
sim = D

−1/2
R∗ D

1/2
R Vsim and (V∗

sim)
ᵀ =

V−1
simD

1/2
R D

−1/2
R∗ . But (V∗

sim)
ᵀ = (V∗)ᵀD1/2

R∗ , as previously noted. Hence, equating yields:

(V∗)ᵀD1/2
R∗ = V−1

simD
1/2
R D

−1/2
R∗ ⇔ V−1

sim = (V∗)ᵀDR∗D
−1/2
R (39)
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At the “long run”, W∞
sim can be approximated by:

W∞
sim ≈

1∥∥∥D1/2
R col (V)1

∥∥∥
2

∥∥∥col (V∗)ᵀ1D
1/2
R∗

∥∥∥
2

×D1/2
R col (V)1 col (V

∗)ᵀ1DR∗D
−1/2
R

=

[
N∑
i=1

dR,i

]−1/2 [ N∑
i=1

d∗R,i

]−1/2
D

1/2
R ιιᵀDR∗D

−1/2
R

=

[
N∑
i=1

N∑
j=1

w0,(i,j)

]−1/2 [ N∑
i=1

N∑
j=1

w∗0,(i,j)

]−1/2
D

1/2
R JDR∗D

−1/2
R

(40)

Note that the eigenvector V∗ is associated with the row stochastic matrix W∗ and the

result of theorem 1.2 holds. In addition, the matrix is rescaled by the geometric mean of

all elements of W0 and W∗
0 because Vsim has to be unitary (resp. orthogonal) and V−1

sim

is a function of (V∗
sim)

ᵀ. Now, to obtain W∞ rewrite W as D
−1/2
R WsimD

1/2
R . This yields:

W∞ = D
−1/2
R W∞

simD
1/2
R =

[
N∑
i=1

N∑
j=1

w0,(i,j)

]−1/2 [ N∑
i=1

N∑
j=1

w∗0,(i,j)

]−1/2
JDR∗ (41)

Again, the matrix product JDR∗ can be simplified to a less demanding matrix-vector

product. Furthermore, the stochastic property ofW∞ remains unchanged, relative toW.

If the powers p ≥ 2 of W are all substituted by W∞, the spatial lag operator inverse is

approximated by:

(I− αW)−1 = I+W + α2W2 + α3W3 + . . .

≈ I+ αW + α2W∞ + α3W∞ + . . .

= I+ αW +
α2

1− α
W∞

≈ I+ αW +
α2

1− α

[
N∑
i=1

N∑
j=1

w0,(i,j)

]−1/2 [ N∑
i=1

N∑
j=1

w∗0,(i,j)

]−1/2
JDR∗

(42)
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Note that the quality of this approximation is related to the number and magnitude of

the (j, i) elements that do not coincide with the (i, j) elements of W0.

3.3 Estimation of a model with a spatially lagged binary depen-

dent variable

In terms of estimation, the N2SLS iterative procedure is considered and the approximation

of the spatial lag operator inverse replaces (I− αW)−1 in the individual gradients for each

parameter. This implies that the true probability, P (Y = 1 |X,W), may be computed

after the algorithm converges. The matrix inversions are replaced by sums of known quan-

tities and by less computationally demanding operations, such as matrix-vector products

and Hadamard products.

On this framework, the error u is known to be heteroskedastic. Therefore, the index of

the link function, G (·), has to be standardized by the diagonal elements of the conditional

variance of the error u. Replacing by the approximation of the spatial lag operator inverse,

it follows that:

Var (u |X,W) ≈
(
I+ αW +

α2

1− α
W∞
)(

I+ αW +
α2

1− α
W∞
)ᵀ

= I+ α (W +Wᵀ) +
α2

1− α
[W∞ + (W∞)ᵀ] + α2WWᵀ

+
α3

1− α
[W (W∞)ᵀ +W∞Wᵀ] +

(
α2

1− α

)2

W∞ (W∞)ᵀ = Σ

(43)

Still there are three quantities from the equation above that require additional calcula-

tions: (i) WWᵀ, (ii) W (W∞)ᵀ and (iii) W∞ (W∞)ᵀ. The major concern about these

quantities is due to the fact that they consist in matrix products of N dimensional ma-

trices. For the first quantity, the only elements that can be obtained without much

computational burden are the diagonal elements:

WWᵀ ≈ diag

(
N∑
j=1

(
W◦2)

i,j

)
= diag

(
N∑
j=1

w2
1,j,

N∑
j=1

w2
2,j, . . . ,

N∑
j=1

w2
N,j

)
(44)
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where W◦2 is the Hadamard square of W. Here, the off diagonal elements are zero,

to avoid additional calculations that rapidly increase the computational complexity of

the operation. As a consequence, the covariances of u are underspecified. But most

importantly, the variances are properly specified.

For the second quantity, consider that W is row stochastic (resp. column stochastic or

doubly stochastic). Recall that the stochastic property of W∞ is always equal to the

stochastic property of W. Then, in general, W∞ = (1/c∗)JDR∗ , has equal row vectors.

Each element of the row vector of W∞ is given by the row sum of W∗
0 divided by the

geometric mean of the sum of all elements ofW0 andW
∗
0. Therefore, the matrix product

W (W∞)ᵀ can be simplified to a matrix-vector product W × row (W∞)1. The result

is the first column vector of W (W∞)ᵀ. Therefore, the result of W∞ (W∞)ᵀ is properly

specified, because the remaining column vectors can be obtained by expanding the matrix-

vector product N − 1 times.

For the third quantity, since W∞ has equal row vectors, the matrix product W∞ (W∞)ᵀ

can be simplified to a matrix-vector product W∞ × row (W∞)1. The result is the first

column vector of W∞ (W∞)ᵀ. A particular feature of this column vector is that all of its

elements are equal – the rows of W∞ are equal to the columns of (W∞)ᵀ –. In addition,

the diagonal elements of W∞ (W∞)ᵀ are given by the Hadamard square of W∞. Thus,

only required to compute the Hadamard square of W∞ and obtain the sum for the first

row. Therefore, the result of W∞ (W∞)ᵀ is properly specified if a N ×N matrix is filled

with
∑N

j=1

(
w∞1,j
)2
.

Using the previous results, the diagonal elements of Var (u |X,W) are now given by:

σ2
i ≈ 1 +

2α2

1− α
w∞i,i + α2

N∑
j=1

w2
i,j +

2α3

1− α

N∑
j=1

wi,jw
∞
1,j +

(
α2

1− α

)2 N∑
j=1

(
w∞1,j
)2

(45)

For a general function G (·), the individual gradients for each parameter are now given

by:

(Γβ)i =
∂u∗,i
∂βᵀ = −u∗,i

(∇g (X##

i β)

g (X##

i β)
− u∗,i

)
X##

i , i = 1, 2, . . . , N (46)

24



The inversion of the spatial lag operator in nonlinear models: fast computation and a
closed formula approximation 25

and

(Γα)i =
∂u∗,i
∂α

= −u∗,i
(∇g (X##

i β)

g (X##

i β)
− u∗,i

)[
Hiβ − X##

i β

2σ2
i

Υii

]
, i = 1, 2, . . . , N

(47)

where the indexes of both functions g (·) and G (·) from the generalized residuals, u∗, are

X##β, with X## =

(
I+ αW +

α2

1− α
W∞
)
X# and the scaled regressors, X#

i , consider

the variance in equation (45). The matrix H requires an approximation:

H ≈
(
I+ αW +

α2

1− α
W∞
)
WX## =

(
W + αW2 +

α2

1− α
W∞W

)
X## = FX##

(48)

In this case, the quantities that require additional calculations are: (i)W2 and (ii)W∞W.

For the first quantity, similarly toWWᵀ, the only elements that can be obtained without

much computational burden are the diagonal elements:

W2 ≈ diag

(
N∑
j=1

(W ◦Wᵀ)i,j

)
= diag

(
N∑
j=1

w1,jwj,1,

N∑
j=1

w2,jwj,2, . . . ,

N∑
j=1

wN,jwj,N

)
(49)

where “◦” is the Hadamard product. Likewise, the off diagonal elements are underspeci-

fied, whereas the diagonal elements are properly specified.

For the second quantity, consider the eigendecomposition for these matrices, this yields:

W∞W = VΛ∞V−1VΛV−1 = VΛ∞V−1 =W∞ (50)

Considering the previous results, F ≈W + α diag
(∑N

j=1 (W ◦Wᵀ)i,j

)
+

α2

1− α
W∞. In

addition, the matrix Υ also requires an approximation. But only the diagonal elements

need to be specified. This yields:
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diag (Υ) = 2× diag
(
(IN − αWN)

−1WN (IN − αWN)
−1 [(IN − αWN)

−1]ᵀ)
≈ 2× diag (FΣ)

= 2× diag

(
N∑
j=1

(F ◦Σᵀ)i,j

)

= 2× diag

(
N∑
j=1

f1,jσj,1,

N∑
j=1

f2,jσj,2, . . . ,

N∑
j=1

f1,NσN,1

)
(51)

It is obvious that the term (IN − αWN)
−1WN is approximated by F and the term

(IN − αWN)
−1 [(IN − αWN)

−1]ᵀ is approximated by Σ. The diagonal elements can be

obtained without much computational burden by the Hadamard product of the two ap-

proximation matrices.

Next, a Monte Carlo set of experiments is implemented to verify the usefulness of the

methods presented in this section.

4 Simulation study

In the previous sections a method to approximate the spatial lag operator inverse was

suggested and implemented to estimate a model with a spatially lagged binary dependent

variable. In this section, the properties of the inverse approximation and the suggested

estimator are verified to demonstrate the feasibility and consistency of both methods.

The simulation study is divided in twofold. Firstly, the quality of the inverse approxi-

mation is analyzed. Additional examples are used to discuss the robustness of the ap-

proximation in the case where some assumptions do not hold. Secondly, the small and

large sample properties of the N2SLS estimator with approximated gradients, the N2SLS

estimator and the Linearized GMM are assessed and compared. Consistency, efficiency

and execution time are central issues.

The model considered in the simulations follows as:
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Y = Φ
(
(I− αW)−1

(
β0ι

# + β1X
#
))

+ (I− αW)−1 ε (52)

where Φ (·) is the CDF of the Normal distribution. The unscaled explanatory variable,

X, is randomly drawn from U (−3, 3) and the error, εi, is randomly drawn from N (0, 1),

for all i. Following McMillen (1995), the variance of X is chosen to be much larger than

the variance of ε because the estimated model tends to produce better predictions for the

dependent variable.

Additionally, four scenarios for the (normalized) spatial weights matrix are considered:

(1) W is a symmetric inverse Euclidean distance matrix, with a distance threshold:

W =

⎧⎨⎩wi,j = 1/di,j if di,j ≤ d∗

wi,j = 0 if di,j > d∗
(53)

(2) W is a non-symmetric inverse Euclidean distance matrix, with a distance threshold

(3) W is a symmetric binary distance based matrix, with a distance threshold:

W =

⎧⎨⎩wi,j = 1 if di,j ≤ d∗

wi,j = 0 if di,j > d∗
(54)

(4) W is a non-symmetric binary distance based matrix, with a distance threshold.

Using these definitions, the scenarios for non-binary and binary spatial weights matrices

are comparable. The non-symmetric matrices are obtained by restricting the element

(1, 2) of the symmetric matrices.

The definition of the sample size follows the work of Lee (2004). The spatial weights

matrix is defined such that there are R regions with, at most, m units. The sample size

is given by N = R×m. This structure allows to define W̃ = IR ⊗Wm, a block diagonal

matrix with R blocks and each block has, at most, m neighbors. Hence, all operations with

W̃ are simplified to Kronecker products involvingWm instead. Taking this approach, one

is able to verify the asymptotics of the estimators based on spatial statistics frameworks.
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Here the asymptotics can be approached in two ways: increasing-domain asymptotics and

infill asymptotics (Cressie, 1993). The former corresponds to a scenario where the samples

are collected from different regions, hence R → ∞ and N → ∞ (Lee, 2004). The latter

corresponds to a scenario where new observations are added between the existing ones

and a bounded area tends to get denser, as N →∞ (Anselin, 2001).

The following experiments consider values of R ∈ {10, 50, 100} and m ∈ {10, 50, 100},
for the four scenarios of the spatial weights matrix. The distance threshold is fixed at

d∗ = 30, to avoid the absence of neighbors, for a given unit i. The samples are generated,

for a fixed W̃, considering α = 0.5, β0 = 0 and β1 = 1. The matrix of instruments

for all estimations is Z =
[
X W̃X W̃∞X

]
. For each scenario and sample designs, 500

replications were used. The simulations were performed in a computer working in a 64-bit

operating system, quad-core Intel based processor with 3.2 GHz and 8 gigabites of RAM.

In the sections that follow, the norm of the approximation to the true inverse is reported,

considering the four spatial weights matrices scenarios. Next, the estimates of α, β0 and

β1 are reported, for each of the three estimators (the N2SLS estimator with approximated

gradients, the N2SLS estimator and the Linearized GMM). The estimates of se (α), se (β0)

and se (β1) are reported, for each of the three estimators, as well. The results are sum-

marized by the mean and mean squared error. To compute the MSE for the empirical

standard errors, it is assumed that the asymptotic standard errors are given by the N2SLS

estimator for m = 50 and R = 100 (simulations for m = 100 and R = 100 were not con-

cluded in time). Execution times and the number of iterations, are also reported and

summarized by the mean.

4.1 Inverse approximation

To evaluate the quality of the inverse approximation, is it useful to establish the following

identity:

(I− αW)−1 (I− αW) = I (55)
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For |α| < 1, this matrix product is available, because (I− αW) is non-singular. If I is

subtracted from both sides of the equation, (I− αW)−1 (I− αW) − I = 0, where 0 is a

matrix of zeros. Applying a norm, the previous difference is zero. Substituting the spatial

lag operator inverse by the corresponding approximation yields:

∥∥∥∥(I+ αW +
α2

1− α
W∞
)
(I− αW)− I

∥∥∥∥ (56)

If this norm is close to zero, the approximation properly identifies the elements of the

inverse.

This simulation study focuses onW instead of W̃, because the inverse of a block diagonal

matrix is the inverse of each block. Here, for simplicity, each of the blocks are assumed

to be equal.

In table 1 the results of the norm, in equation (56), are presented, considering the four

scenarios of the normalized spatial weights matrix,W, and α = 0.5. The size of these ma-

trices is determined by m, the maximum number of units in each block, R. Exceptionally

m is ranging from 10 to 1000, because the dimension R is dropped.

In a nutshell, on average, the quality of the approximation slightly deteriorates as m →
∞. The approximation appears to be better for binary matrices and the effect of non-

symmetry is minimal, if only few (j, i) elements are not equal to the corresponding (i, j)

elements.

Taking in consideration the results of table 2, regarding the computational time required

to calculate the inverse matrix, the previous results are remarkable. When the matrix size

increases from 500 to 1000, the computational time increases, on average, by 10 times.

However, the quality of the approximation deteriorates by a far less amount, depending

on the nature of the matrix. There is a striking evidence towards the importance of the

inverse approximation for large sized matrices.

Still these results are based on the assumption that the largest absolute eigenvalue has

algebraic multiplicity equal to one. In practice, this assumption may be quite restrictive.

Especially for binary spatial weights matrices, there is the possibility that the algebraic

multiplicity is, indeed, larger than one and the matrix is not block diagonal, or the smallest
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eigenvalue is −1. As a consequence, the first eigenvector of W is no longer a vector of

ones2.

Consider the following adapted examples of normalized binary spatial weights matrices,

from (Arbia, 2014, p. 29) and (Anselin, 1988, p. 19):

Arbia (2014) Anselin (1988)

W =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 0 1

0 0 0 1

0 1 0 0

⎤
⎥⎥⎥⎥⎦

W =

⎡
⎢⎢⎢⎢⎣

0 1/2 0 1/2

1/2 0 1/2 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦

For both matrices, the largest eigenvalue is 1 and the smallest eigenvalue is −1. Then, for
each, there two largest absolute eigenvalues equal to one and the first eigenvector is no

longer a vector of ones. Under this eigenstructure, the quality of the inverse approximation

for such matrices is addressed. For α = 0.5, the true inverses of the spatial lag operators

are:

Arbia (2014) Anselin (1988)

(I− αW)−1 =

⎡
⎢⎢⎢⎢⎣

1 0.67 0 0.33

0 1.33 0 0.67

0 0.33 1 0.67

0 0.67 0 1.33

⎤
⎥⎥⎥⎥⎦

(I− αW)−1 =

⎡
⎢⎢⎢⎢⎣

1.24 0.36 0.09 0.31

0.36 1.24 0.31 0.09

0.18 0.62 1.16 0.04

0.62 0.18 0.04 1.16

⎤
⎥⎥⎥⎥⎦

And the approximations are given by:

Arbia (2014) Anselin (1988)

I+ αW +
α2

1− α
W∞ =

⎡
⎢⎢⎢⎢⎣

1.10 0.70 0.10 0.20

0.10 1.20 0.10 0.70

0.10 0.20 1.10 0.70

0.10 0.70 0.10 1.20

⎤
⎥⎥⎥⎥⎦

I+ αW +
α2

1− α
W∞ =

⎡
⎢⎢⎢⎢⎣

1.17 0.42 0.08 0.33

0.42 1.17 0.33 0.08

0.17 0.67 1.08 0.08

0.67 0.17 0.08 1.08

⎤
⎥⎥⎥⎥⎦

The norms are, respectively, ‖·‖ = 0.356 and ‖·‖ = 0.258. Considering that, before

normalization, the matrices were binary, the quality of the approximation deteriorates at

least 2 times, compared to the average norm of approximation for non-symmetric binary

spatial weights matrix (see table 1). If the coefficient on W∞ is replaced by α2/ (1− α2),

the quality of the approximation may improve, because only the even powers of W are

substituted by W∞, eliminating the negative eigenvalue issue.

2The first eigenvector may have elements equal to 1, −1 or 0.
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4.2 Estimation

Table 3 summarizes the results of the Monte Carlo simulation study, for the spatial lag

Probit, with a symmetric inverse distance matrix.

The estimates of α, α̂, are slightly biased, in all three estimators (Nonlinear Two Stages

Least Squares – N2SLS –, N2SLS with approximated gradients – N2SLSa – and the

Linearized GMM – LinGMM –). For a fixed m, the biases of α̂ decrease, as R becomes

larger. The same do not apply for a fixed R and increasingm. Therefore, under increasing-

domain asymptotics consistency can be achieved, whereas under infill asymptotics the

estimators may not be consistent. This in line with the conclusions of Lahiri (1996) and

Lee (2004). The same argument is valid for both β̂0 and β̂1. Though the Linearized GMM

estimates for β1 are severely biased.

The empirical standard errors steadily decrease as both R and m increase. The same

applied to the MSE of the estimates and to the MSE of the empirical standard errors,

except for se (α̂). In fact, the MSE of se (α̂) increase as both R and m increase.

In terms of the computational time, it is obvious that the Linearized GMM outperforms

the two remaining estimators. For the N2SLS estimator, it exponentially increases as R

and m increase. The same is valid to the N2SLSa estimator, but at a slower rate. This is

related to the fact that the N2SLSa struggles to converge, by two iterations, on average,

when compared to the N2SLS estimator. These results appear to be a disappointment.

Nevertheless, the progressive integration of C++ codes and high performance linear al-

gebra routines in statistical and mathematical software, already allows to manage large

amounts of information. Still, it is restricted to simple matrix operations, such as the sum

or the product. So, the computational time of the N2SLSa estimator can be drastically

improved, whereas the effect on the N2SLS estimator is still unknown. To guarantee

comparability, this approach is not yet considered.
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5 Empirical application: Competitiveness in U.S. Metropoli-

tan Areas

In this section, a short empirical application about competitiveness in the United States

Continental Metropolitan Statistical Areas (MSAs) is presented. The previous estimators

are used and their adaptability to empirical data is assessed.

Competitiveness is currently one of the main concerns for policy makers. It is a measure

of economic performance, usually related to the GDP growth or the unit labor costs (the

cost of labour per units of output). Porter et al. (2016), in an extensive survey about U.S.

competitiveness, highlight the progressive deterioration of the whole economy, especially

in the 2000s. This is related to the consecutive economic crisis and the accumulation of

trade deficits.

Additionally, the environmental issues in the U.S. are a controversial subject since the

mid-2000s. In the Economics theory, these environmental issues are addressed by the

Environmental Kuznets Curve (EKC) hypothesis (Grossman and Krueger, 1991; Shafik

and Bandyopadhyay, 1992; Panayotou, 1993). The EKC hypothesis states that there is

an inverted “U” shaped relationship between environmental degradation and economic

growth. Similarly, this led to controversy especially in terms of the shape of the curve

(de Bruyn, van den Bergh, and Opschoor, 1998).

Besides the theoretical discussions, recognizing that there is a progressive decline in the

environmental quality, contributed to the definition of strategic plans that focus on both

economic and ecological growth. As a result, the EKC hypothesis can be reversed: compet-

itiveness may be affected by environmental quality. However, empirically, this relationship

is not yet tested.

The literature focus on the analysis of competitiveness and environmental quality as sep-

arate subjects. In addition, only few works consider a regional level analysis, namely

Dudensing and Barkley (2010) and Rice, Venables, and Patacchini (2006), addressing

regional competitiveness in a spatial framework (U.S. Southern Metropolitan Areas and

British regions, respectively), and Rupasingha, Goetz, Debertin, and Pagoulatos (2004)

and Millimet, List, and Stengos (2003), for a spatial analysis on the EKC hypothesis at
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regional level (U.S. counties and U.S. states, respectively). Still nothing is done for spatial

discrete variables.

This study consists in the analysis of a binary regional competitiveness indicator in terms

of environmental quality variables, for 2009. The regional units are the U.S. Continental

MSAs with more than 350 thousand inhabitants in the 2000 Population Census (N = 129).

The year 2009 is of particular interest, as it is the first year that the U.S. economy ex-

hibited strong recovery signs, after the economic crisis of the mid-2000s. The dataset

is a combination of socioeconomic data and environmental data for the selected MSAs.

The sources are respectively, the U.S. Bureau of Economic Analysis (BEA) and the U.S.

Environmental Protection Agency (EPA). Considering the available data, the binary com-

petitiveness indicator is given by:

Yi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if

(
LCi

GDPi

− LCUSA

GDPUSA

)
≥ 0

0, if

(
LCi

GDPi

− LCUSA

GDPUSA

)
< 0

, i = 1, . . . , 129 (57)

where LC is the Total Labor Compensation and GDP is the Total Gross Domestic Prod-

uct. The binary variable, Yi, indicates whether a given MSA i is more competitive than

the whole country. Figure 1 shows the spatial distribution of the competitiveness indica-

tor for each MSA. The darker areas correspond to competitive areas. There are at least

two clusters of competitive MSAs (with respect to the whole country) in the same state

– California and Florida – and two multi-state clusters of competitive MSAs – Virginia,

Maryland, Pennsylvania and New Jersey; Connecticut, Massachusetts and New Hamp-

shire –. As these are MSAs with typically high GDP, the productivity of an additional

dollar spent in labor is much higher than in the whole country.

Table 7 presents the descriptive statistics for the variables used on the analysis. The

reported AQI is the annualized Air Quality Index (divided by 100). It is calculated, on

a daily basis, for each of five major pollutants: (1) ground-level ozone (O3), (2) particule

pollution (PM2.5 and PM10), (3) carbon monoxide (CO), (4) sulfur dioxide (SO2) and

(5) nitrogen dioxide (NO2). The daily AQI corresponds to the maximum daily index

for each pollutant, depending on the observed concentration levels and admissible values
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for that particular day. The AQImin and AQImax are, respectively, the minimum and

maximum annualized AQI for a given MSA i, in 2009.

The variables % days O3, % days PM2.5 and % days NO2 are the percentage of days that

each of the pollutants were responsible for the overall value of the daily AQI. Their

averages sum up to approximately 0.93. Therefore, they are the pollutants that contribute

the most for the overall value of the daily AQI on a given MSA i, in 2009.

To study the effects of environmental indicators over the binary competitiveness in the

selected MSAs, a spatial lag Probit is estimated. Recall that, on this framework G (·) =
Φ (·), the CDF of the Normal distribution. The spatial weights matrix W is assumed to

be a binary radial matrix, with a distance threshold, d∗ = d̄ − 0.5 sd (d) ≈ 6, where d̄ is

the average Euclidean distance between MSAs and sd (d) is the corresponding standard

deviation. For all the estimators, the matrix of instruments is Z =
[
X W̃X W̃∞X

]
.

The estimation results are shown in table 8. All of the three estimators produce coherent

estimates, in terms of sign and significance. Exception made to the variable AQImin, not

significant in the Linearized GMM estimation. However, in terms of magnitude, some

estimates differ drastically. Not surprisingly, this is the case of the spatial lag parameter,

ranging from α̂ = 0.524 to α̂ = 0.799. This is a consequence of the approximations made

in both N2SLS with approximated gradients and Linearized GMM, but also due to the

small sample size.

In addition, the Hansen test is presented. The null of correct over-identifying restrictions

is only rejected for the N2SLS estimator. Again, these results are debatable, due to small

sample distortions.

Still, striking conclusions can be taken from these results. The partial effects cannot be

directly addressed, as the estimated model is nonlinear. Nevertheless, as the spatial lag

operator inverse is a sum of non-negative matrices, the estimated signs correspond to the

estimated signs of the partial effects in the nonlinear model.

Even though the estimates of the spatial parameter are far from stable, one may argue

that there is a medium-high degree of spatial dependence between the selected MSAs, in

2009. This means that, if the neighbors are competitive, then, on average, the probability
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that the MSA i is competitive (with respect to whole country) increases. Also, an envi-

ronmental degradation implies that, on average, there is a reduction on the probability

that the MSA i is competitive.

Furthermore, the quality of the predictions can be used as a measure for the overall

adjustment of the previous estimators. Wooldridge (2010) defines the predictions under

a binary dependent variable framework as it follows:

Ŷi =

⎧⎨⎩1, if Φ
(
X̂##

i β̂
)
≥ Ȳ

0, if Φ
(
X̂##

i β̂
)
< Ȳ

(58)

where X̂##

i is a function of the estimated spatial lag parameter, α̂. The indicator that

measures the quality of the predictions is given by:

P =
N00 +N11

N
(59)

where N00 and N11 are, respectively, the number of zeroes and ones well predicted. Then

for each estimator we have, PN2SLSa = 0.6828, PN2SLS = 0.6828 and PLinGMM = 0.5659.

These are outstanding results. Even though the estimates of the two N2SLS estimators

are different, they produce exactly the same predictions. Therefore, the approximation of

the spatial lag operator inverse do not seem to penalize the ability of the estimator, with

regard to prediction. The same is likely to happen to the estimates of the partial effects.

6 Conclusion

The idea of this paper is to simplify the estimation procedures of nonlinear models in

spatial frameworks. Taking into account the eigenstructure of the spatial weights matrix,

it is possible to reduce the problem of inverting the spatial lag operator to a simpler

operation involving known matrix sums. At the same time, two problems are solved.

First, the elements of the spatial lag operator inverse now have an approximated close

formula. Second, the computational time required to invert the spatial lag operator can

be drastically reduced.
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Even though the quality of the approximation may not the best, when applied to the

estimation of a nonlinear model, it produces reliable estimates. The proposed estimator,

with approximated gradients (N2SLSa), is a feasible and consistent alternative to the

N2SLS estimator (a particular case of the full GMM estimator), specially for large samples.

Moreover, the N2SLSa estimator and the N2SLS estimator produce exactly the same

predictions. The difference is, once again, computational time.

The empirical application allowed to extend the literature in twofold. First, the positive

spillovers of the probability of being competitive. This implies that the MSAs do not

appear to compete, instead they cooperate, allowing to create regional clusters and pro-

mote integration between industries. As this integration strengthens, the U.S. economy

becomes less exposed to exogenous industry-specific shocks. Second, the negative corre-

lation between environmental degradation and the probability of being competitive. The

idea that pollution implies more output is misleading, if economic performance is at cause.

As environmental degradation is related to health problems, the value of a worker tends

to reduce. However, the cost of the same worker may probably increase due to health

expenditures. Hence, it is less probable that a given MSA i is competitive, with respect

to the whole country.

Furthermore, improving the computational time of the N2SLSa estimator without over-

simplifying the model is a true possibility, as C++ codes and high performance linear

algebra routines can be integrated to several statistical software. The ultimate goal would

the ability of using big data in spatial frameworks.

Finally, the proposed approximation can be applied to linear models, as well. In particular,

it can be used to approximate the log-determinant of the likelihood function. In fact, due

to its simplicity, this approximation can be quickly introduced in the estimation routine

of any researcher.
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7 Appendix

7.1 Appendix 1

Table 1: Quality of the approximation to the true spatial lag operator inverse

(1) (2) (3) (4)

m 10 0.211 0.378 0.101 0.103
50 0.318 0.317 0.104 0.104
100 0.334 0.334 0.106 0.106
500 0.342 0.342 0.107 0.107
1000 0.350 0.350 0.106 0.106

Table 2: Computational time (in seconds) of the spatial lag operator inverse

(1) (2) (3) (4)

m 10 0.006 0.005 0.006 0.005
50 0.005 0.007 0.006 0.007
100 0.011 0.015 0.014 0.015
500 0.439 0.475 0.447 0.468
1000 4.337 4.416 4.339 4.437
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7.2 Appendix 2

Figure 1: Binary competitiveness indicator for the selected MSAs

Table 7: Descriptive statistics

Y AQImin AQImax % days O3 % days PM2.5 % days NO2

Mean 0.628 0.160 1.420 0.361 0.521 0.045
Std. Dev. 0.485 0.076 1.120 0.199 0.212 0.055

Min 0.000 0.030 0.710 0.033 0.027 0.000
Q1 0.000 0.100 1.100 0.212 0.401 0.000

Median 1.000 0.150 1.240 0.295 0.555 0.021
Q3 1.000 0.210 1.530 0.473 0.680 0.077
Max 1.000 0.360 13.410 0.970 0.866 0.219
N 129 129 129 129 129 129
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Table 8: Spatial lag Probit estimation results

Dependent variable:

Y

(N2SLSa) (N2SLS) (Lin. GMM)

Constant 6.098∗∗∗ 5.852∗∗∗ 5.422
(1.860) (2.220) (3.338)

AQImin −4.228∗∗∗ −3.582∗ −2.438
(1.598) (1.844) (4.759)

AQImax −0.223 −0.229 −0.257
(0.160) (0.158) (1.781)

% days O3 −5.569∗∗∗ −5.171∗∗ −4.763∗∗
(1.858) (2.112) (2.316)

% days PM2.5 −5.694∗∗∗ −5.399∗∗∗ −5.380∗∗
(1.942) (2.049) (2.326)

% days NO2 −1.865 −1.707 −3.516
(2.693) (2.539) (3.018)

Spatial Lag 0.799∗ 0.524∗∗ 0.601∗

(0.455) (0.267) (0.346)

Observations 129 129 129
# Iterations 30 16
Hansen test 5.402 1.360 4.758
(significance level) (0.202) (0.002) (0.145)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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