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1  The stem and leaf plot below shows 40 observations of an exchange rate. 
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For these data, 50.000.x =∑    

 
 (i)  Find the mean, median and mode. [3] 
 
 (ii)  State, with reasons, which measure of those considered in part (i) you would 

prefer to use to estimate the central point of the observations. [1] 
   [Total 4] 
 
 
2 An insurance company experiences claims at a constant rate of 150 per year.  
 
 Find the approximate probability that the company receives more than 90 claims in a 

period of six months. [4] 
 
 
3   The random variable X has a distribution with probability density function given by 
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 where θ is the parameter of the distribution.  
 
 (i) Derive expressions in terms of θ for the expected value and the variance of X.  

 [3] 
 
 Suppose that 1 2, ,..., nX X X is a random sample,  with mean ,X  from the distribution 

of X.  
 

 (ii) Show that the estimator 3ˆ
2
X

θ =  is an unbiased estimator of θ.  [2] 

   [Total 5] 
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4   An actuary is considering statistical models for the observed number of claims, X, 
which occur in a year on a certain class of non-life policies. The actuary only 
considers policies on which claims do actually arise. Among the considered models is 
a model for which 
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 where θ is a parameter such that  0 < θ < 1. 
 
 Suppose that the actuary has available a random sample X1, X2, …, Xn with sample 

mean .X  
 
 (i) Show that the method of moments estimator (MME), θ , satisfies the equation 

 
   ( ) ( ) 1 log 1  0X −θ −θ +θ = . [3] 
 

(ii) (a)  Show that the log likelihood of the data is given by 
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 (b)  Hence verify that the maximum likelihood estimator (MLE) of  θ is the 
same as the MME.  [4] 

 
 (iii) Suggest two ways in which the MLE of θ can be computed when a particular 

data set is given. [1] 
   [Total 8] 
 
 
 5 Consider a random sample consisting of the random variables 1 2, ,..., nX X X  with 

mean μ and variance σ2. The variables are independent of each other. 
 
 (i) Show that the sample variance, 2S , is an unbiased estimator of the true 

variance σ2.  [3] 
 

 Now consider in addition that the random sample comes from a normal distribution, 

in which case it is known that  
2
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(ii) (a)  Derive the variance of 2S  in terms of σ and n.    

  
 (b)  Comment on the quality of the estimator 2S  with respect to the sample 

size n.       [4] 
   [Total 7] 
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6  A researcher obtains samples of 25 items from normally distributed measurements 
from each of two factories. The sample variances are 2.86 and 9.21 respectively.  

 
 (i)  Perform a test to determine if the true variances are the same. [3] 
 
 (ii)  For each factory calculate central 95% confidence intervals for the true 

variances of the measurements. [4] 
 
 (iii)  Comment on how your answers in parts (i) and (ii) relate to each other. [1] 
   [Total 8] 
 
 
7  A motor insurance company has a portfolio of 100,000 policies. It distinguishes 

between three groups of policyholders depending on the geographical region in which 
they live. The probability p  of a policyholder  submitting at least one claim during a 
year is given in the following table together with the number, n, of policyholders 
belonging to each group.. Each policyholder belongs to exactly one group and it is 
assumed that they do not move from one group to another over time.  

 
Group A B C 

p 0.15 0.1 0.05
n (in 1000s) 20 20 60 

 
 It is assumed that any individual policyholder submits a claim during any year 

independently of claims submitted by other policyholders. It is also assumed that 
whether a policyholder submits any claims in a year is independent of claims in 
previous years conditional on belonging to a particular group. 

  
 (i) Show that the probability that a randomly selected policyholder will submit a 

claim in a particular year is 0.08.  [2] 
 
 (ii) Calculate the probability that a randomly selected policyholder will submit a 

claim in a particular year given that the policyholder is not in group C.  [2] 
 
 (iii) Calculate the probability for a randomly selected policyholder to belong to 

group A given that the policyholder submitted a claim last year. [2] 
 
 (iv) Calculate the probability that a randomly selected policyholder will submit a 

claim in a particular year given that the policyholder submitted a claim in the 
previous year. It is assumed that the insurance company does not know to 
which group the policyholder belongs. [3]  

 
 (v) Calculate the probability that a randomly selected policyholder will submit a 

claim in two consecutive years.  [2] 
   [Total 11] 
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9 The random variables AY  and BY  describe the number of hours per month that a 
randomly selected household in Cities A and B, respectively, uses its car. Both cities 
recently decided to introduce measures to reduce road congestion. To investigate the 
effect of these measures ten households in each city were randomly selected and 
asked about the hours per month that they use their car before and after the measures 
were introduced. The random variables AZ  and BZ  describe the hours of car usage 
after the measures have been introduced, and A A AX Y Z= −  and B B BX Y Z= −  
denote the reduction in car usage. The following table shows the summary statistics 
for the ten households in the two cities. 

 
Sample size n y  Ys  z  Zs  Xs  

City A 10 33 7.5 28.5 7 2 
City B 10 29 8 28 7 2.5 

 
 Here, y and z denote the sample means of Y  and Z  in the two cities, and  Ys , Zs  

and Xs  denote the sample standard deviations for Y, Z and X respectively. 
 
 You can assume that the random variables AY  and BY  are independent and 

approximately normally distributed 
 
 (i) Perform a statistical test at a 5% significance level to test the null hypothesis 

that expected car usage in City A was the same as expected car usage in City 
B before the measures were introduced. State all other assumptions that you 
make and justify them. [6] 

 
 An actuary wishes to investigate whether the measures to reduce road congestion have 

been effective. 
 
 (ii) Perform a statistical test at the 5% significance level, where the alternative 

hypothesis is that car usage in City A has been reduced as a result of the 
measures. [4] 

 
 (iii) Calculate a 95% confidence interval for the expected reduction in car usage 

for City B. [3] 
 
 To investigate further the impact of measures to reduce road congestion, a third city, 

City C, is included in the study. The following table contains the data for 10 randomly 
selected households in City C: 

 
 Sample size n y Ys  z  Zs  Xs  

City C 10 37 9 33 8 3 
 
 Let ijx  denote the observed reduction in car usage in city i  for household j . 

 

 (iv) Confirm that 
j=1
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 You are also given 
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 (v) Perform an analysis of variance to test at a 5% significance level the null 

hypothesis that there is no difference in the mean reduction in car usage 
between the three cities. [6] 

   [Total 21] 
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