Google

Aviso: Se está a ler esta mensagem, provavelmente, o browser que utiliza não é compatível com os "standards" recomendados pela W3C. Sugerimos vivamente que actualize o seu browser para ter uma melhor experiência de utilização deste "website". Mais informações em webstandards.org.

Warning: If you are reading this message, probably, your browser is not compliant with the standards recommended by the W3C. We suggest that you upgrade your browser to enjoy a better user experience of this website. More informations on webstandards.org.

CA  >  Actuarial Science  >  Currículo  >  Risk Models

Mestrado em Actuarial Science

Plano Curricular Actuarial Science


Risk Models (MR-CA)

UC Competência

Risk Models(Matemática)

UC Execução

Risk Models (2020/2021 - Semestre 1)
Risk Models (2019/2020 - Semestre 1)
Risk Models (2018/2019 - Semestre 1)
Modelos de Risco (2017/2018 - Semestre 1)
Modelos de Risco (2016/2017 - Semestre 1)
Modelos de Risco (2015/2016 - Semestre 1)
Modelos de Risco (2014/2015 - Semestre 1)
Modelos de Risco (2013/2014 - Semestre 1)
Modelos de Risco (2012/2013 - Semestre 1)
Modelos de Risco (2011/2012 - Semestre 1)

Contextos

Grupo: Actuarial Science > 2º Ciclo > Unidades Curriculares Obrigatórias

Período: 1 Ano, 1 Semestre

Peso

6.0 (para cálculo da média)

Objectivos

The student is expected:
- To use statistical methods to define and estimate models adequate to model claims behaviour or other relevant aspects of the actuarial work.
- To understand the assumptions implicit in each statistical technique.
- To recognize which assumptions and statistical technique are appropriate to solve a given problem.

Programa

- Review of Basic statistical concepts
- Non-parametric estimation
- Frequentist estimation
- Bayesian estimation
- Model Selection
- Simulation and Bootstrap

Metodologia de avaliação

The curricular unit will be taught by mean of theoretical-practical lectures using slides to underline the main points and using a computer to solve some examples. Student's autonomous work is a main point of teaching methodologies. Students must also solve a set of exercises. The final grade, on the scale of 0 to 20, is assigned on the basis of a written exam (70%) and an exam using the computer (30%) based on EXCEL and R.

Bibliografia

Principal

Loss Models ? From data to decisions

Klugman, S.A., Panjer, H.H. and Willmot, G.E.

2008

4th Edition, John Wiley & Sons, Inc., New-Jersey.

Bootstrap Methods and Permutation Tests

Hesterberg, T., Monaghan, S., Mooree, D.S., Clipson, A., Epstein, R.

2003

companion chapter 18 to The practice of Business Statistics by David S. Moore, MCCabe, Duckworth and Sclove.

Statistical Inference

Casella, G. and Berger, R.

2001

(Second Edition). Duxbury Press.

An Introduction to the Bootstrap

Efron, B. and Tibshirami, R.J.

1993

Chapman & Hall, New-York.

Simulation

Ross, S.M.

2002

3rd Edition, Academic Press

Applied Simulation Modeling

Seila, A., Ceric,V. and Tadikamalla,P.

2003

Duxbury Applied Serie.

All of Statistics: A Concise Course in Statistical Inference

Wasserman, L.

2004

New York, Springer.

Secundária

Não existem referências bibliográficas secundárias.