Google

Aviso: Se está a ler esta mensagem, provavelmente, o browser que utiliza não é compatível com os "standards" recomendados pela W3C. Sugerimos vivamente que actualize o seu browser para ter uma melhor experiência de utilização deste "website". Mais informações em webstandards.org.

Warning: If you are reading this message, probably, your browser is not compliant with the standards recommended by the W3C. We suggest that you upgrade your browser to enjoy a better user experience of this website. More informations on webstandards.org.

CA  >  Actuarial Science  >  Currículo  >  Ratemaking and Experience Raking

Mestrado em Actuarial Science

Plano Curricular Actuarial Science


Ratemaking and Experience Raking (TARIF-CA)

UC Competência

Ratemaking and Experience Raking(Matemática)

UC Execução

Ratemaking and Experience Raking (2020/2021 - Semestre 1)
Tarifação (2019/2020 - Semestre 1)
Tarifação (2018/2019 - Semestre 1)
Tarifação (2017/2018 - Semestre 1)
Tarifação (2016/2017 - Semestre 1)
Tarifação (2015/2016 - Semestre 1)
Tarifação (2014/2015 - Semestre 1)
Tarifação (2013/2014 - Semestre 1)
Tarifação (2012/2013 - Semestre 1)

Contextos

Grupo: Actuarial Science > 2º Ciclo > Unidades Curriculares Optativas > Optativa 1

Período: 2 Ano, 1 Semestre

Grupo: Actuarial Science > 2º Ciclo > Unidades Curriculares Obrigatórias

Período: 2 Ano, 1 Semestre

Peso

4.0 (para cálculo da média)

Objectivos

On completion of the subject the student should be able to build a tariff for some sorts of insurance, particularly those for big portfolios, like in the motor insurance line of business. To achieve that, it is necessary to bring tools that model the past experience onto the portfolio future rating.
Thus, the student should get solid knowledge on Credibility Theory, Bonus-Malus Systems, as well as be able to apply his acquired knowledge on Generalized Linear Models to ratemaking.

Programa

- Introduction and concepts
- Credibility theory
- Bonus-malus systems
- Experience rating and Generalized Linear Models. Applications

Metodologia de avaliação

Evaluation will be twofold: A final exam according to ISEG's exam regulations at the end of the semester and a project. Exam is individual and the project is a tariff build and made by group of students. Project grade has a weight of 20% in the final mark.

Bibliografia

Principal

Loss Models, From Data to Decisions

Klugman, S.A.; Panjer, H.H. & Willmot, G.E.

2012

(4rd edition), John Wiley & Sons, Hoboken NJ.

Modern Actuarial Risk Theory: Using R

Kaas, R.,Goovaerts, M., Dhaene, J. e Denuit, M.

2008

(2nd edition), Springer.

Non-Life Insurance Pricing with Generalized Linear Models

Ohlsson, E. & Johansson, B.

2010

series/EAA Lecture Notes, Springer

Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-malus Systems

Denuit, M.; Maréchal, X.; Pitrebois, S. & Walhin, J-F.

2007

John Wiley & Sons, Chichester, England

Secundária

Não existem referências bibliográficas secundárias.